| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbeeven | Structured version Visualization version GIF version | ||
| Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbeeven | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgbe 47732 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 (class class class)co 7410 + caddc 11137 ℙcprime 16695 Even ceven 47605 Odd codd 47606 GoldbachEven cgbe 47726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-rab 3421 df-v 3466 df-gbe 47729 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |