Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbeeven Structured version   Visualization version   GIF version

Theorem gbeeven 45206
Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
gbeeven (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even )

Proof of Theorem gbeeven
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 45203 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
21simplbi 498 1 (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  (class class class)co 7275   + caddc 10874  cprime 16376   Even ceven 45076   Odd codd 45077   GoldbachEven cgbe 45197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-rab 3073  df-v 3434  df-gbe 45200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator