Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbeeven | Structured version Visualization version GIF version |
Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) |
Ref | Expression |
---|---|
gbeeven | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe 45203 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 (class class class)co 7275 + caddc 10874 ℙcprime 16376 Even ceven 45076 Odd codd 45077 GoldbachEven cgbe 45197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-rab 3073 df-v 3434 df-gbe 45200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |