| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbeeven | Structured version Visualization version GIF version | ||
| Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbeeven | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgbe 47782 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 (class class class)co 7341 + caddc 11004 ℙcprime 16577 Even ceven 47655 Odd codd 47656 GoldbachEven cgbe 47776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-gbe 47779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |