![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbeeven | Structured version Visualization version GIF version |
Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) |
Ref | Expression |
---|---|
gbeeven | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe 47676 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 (class class class)co 7431 + caddc 11156 ℙcprime 16705 Even ceven 47549 Odd codd 47550 GoldbachEven cgbe 47670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-rab 3434 df-v 3480 df-gbe 47673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |