Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbeeven | Structured version Visualization version GIF version |
Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) |
Ref | Expression |
---|---|
gbeeven | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe 45091 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 (class class class)co 7255 + caddc 10805 ℙcprime 16304 Even ceven 44964 Odd codd 44965 GoldbachEven cgbe 45085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-rab 3072 df-v 3424 df-gbe 45088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |