Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowodd Structured version   Visualization version   GIF version

Theorem gbowodd 45095
Description: A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
gbowodd (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )

Proof of Theorem gbowodd
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 45092 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
21simplbi 497 1 (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wrex 3064  (class class class)co 7255   + caddc 10805  cprime 16304   Odd codd 44965   GoldbachOddW cgbow 45086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-rab 3072  df-v 3424  df-gbow 45089
This theorem is referenced by:  gboodd  45097
  Copyright terms: Public domain W3C validator