|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbowodd | Structured version Visualization version GIF version | ||
| Description: A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.) | 
| Ref | Expression | 
|---|---|
| gbowodd | ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgbow 47739 | . 2 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 (class class class)co 7431 + caddc 11158 ℙcprime 16708 Odd codd 47612 GoldbachOddW cgbow 47733 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3482 df-gbow 47736 | 
| This theorem is referenced by: gboodd 47744 | 
| Copyright terms: Public domain | W3C validator |