Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowodd Structured version   Visualization version   GIF version

Theorem gbowodd 47736
Description: A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
gbowodd (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )

Proof of Theorem gbowodd
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 47733 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
21simplbi 497 1 (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3061  (class class class)co 7410   + caddc 11137  cprime 16695   Odd codd 47606   GoldbachOddW cgbow 47727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rex 3062  df-rab 3421  df-v 3466  df-gbow 47730
This theorem is referenced by:  gboodd  47738
  Copyright terms: Public domain W3C validator