Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gboodd | Structured version Visualization version GIF version |
Description: An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
gboodd | ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gbogbow 45096 | . 2 ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |
2 | gbowodd 45095 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Odd codd 44965 GoldbachOddW cgbow 45086 GoldbachOdd cgbo 45087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-rab 3072 df-v 3424 df-gbow 45089 df-gbo 45090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |