![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gboodd | Structured version Visualization version GIF version |
Description: An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
gboodd | ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gbogbow 47681 | . 2 ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |
2 | gbowodd 47680 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Odd codd 47550 GoldbachOddW cgbow 47671 GoldbachOdd cgbo 47672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-rab 3434 df-v 3480 df-gbow 47674 df-gbo 47675 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |