Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gboodd Structured version   Visualization version   GIF version

Theorem gboodd 47755
Description: An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gboodd (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd )

Proof of Theorem gboodd
StepHypRef Expression
1 gbogbow 47754 . 2 (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW )
2 gbowodd 47753 . 2 (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )
31, 2syl 17 1 (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   Odd codd 47623   GoldbachOddW cgbow 47744   GoldbachOdd cgbo 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3406  df-v 3449  df-gbow 47747  df-gbo 47748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator