![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gboodd | Structured version Visualization version GIF version |
Description: An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
gboodd | ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gbogbow 46038 | . 2 ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |
2 | gbowodd 46037 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Odd codd 45907 GoldbachOddW cgbow 46028 GoldbachOdd cgbo 46029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3071 df-rab 3407 df-v 3449 df-gbow 46031 df-gbo 46032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |