Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbepos | Structured version Visualization version GIF version |
Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbepos | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe 45091 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
2 | prmnn 16307 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
3 | prmnn 16307 | . . . . . . . . 9 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
4 | nnaddcl 11926 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ) | |
5 | 2, 3, 4 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ) |
6 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑍 = (𝑝 + 𝑞) → (𝑍 ∈ ℕ ↔ (𝑝 + 𝑞) ∈ ℕ)) | |
7 | 5, 6 | syl5ibr 245 | . . . . . . 7 ⊢ (𝑍 = (𝑝 + 𝑞) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ)) |
8 | 7 | 3ad2ant3 1133 | . . . . . 6 ⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ)) |
9 | 8 | com12 32 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))) |
11 | 10 | rexlimdvv 3221 | . . 3 ⊢ (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)) |
12 | 11 | imp 406 | . 2 ⊢ ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 𝑍 ∈ ℕ) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 (class class class)co 7255 + caddc 10805 ℕcn 11903 ℙcprime 16304 Even ceven 44964 Odd codd 44965 GoldbachEven cgbe 45085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-prm 16305 df-gbe 45088 |
This theorem is referenced by: gbege6 45105 |
Copyright terms: Public domain | W3C validator |