Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbepos Structured version   Visualization version   GIF version

Theorem gbepos 45480
Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbepos (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)

Proof of Theorem gbepos
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 45473 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
2 prmnn 16453 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3 prmnn 16453 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
4 nnaddcl 12075 . . . . . . . . 9 ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ)
52, 3, 4syl2an 596 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ)
6 eleq1 2824 . . . . . . . 8 (𝑍 = (𝑝 + 𝑞) → (𝑍 ∈ ℕ ↔ (𝑝 + 𝑞) ∈ ℕ))
75, 6syl5ibr 245 . . . . . . 7 (𝑍 = (𝑝 + 𝑞) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ))
873ad2ant3 1134 . . . . . 6 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ))
98com12 32 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))
109a1i 11 . . . 4 (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)))
1110rexlimdvv 3200 . . 3 (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))
1211imp 407 . 2 ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 𝑍 ∈ ℕ)
131, 12sylbi 216 1 (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wrex 3070  (class class class)co 7316   + caddc 10953  cn 12052  cprime 16450   Even ceven 45346   Odd codd 45347   GoldbachEven cgbe 45467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-un 7629  ax-1cn 11008  ax-addcl 11010  ax-addass 11015
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-nn 12053  df-prm 16451  df-gbe 45470
This theorem is referenced by:  gbege6  45487
  Copyright terms: Public domain W3C validator