Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbepos Structured version   Visualization version   GIF version

Theorem gbepos 47683
Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbepos (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)

Proof of Theorem gbepos
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 47676 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
2 prmnn 16708 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3 prmnn 16708 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
4 nnaddcl 12287 . . . . . . . . 9 ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ)
52, 3, 4syl2an 596 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ)
6 eleq1 2827 . . . . . . . 8 (𝑍 = (𝑝 + 𝑞) → (𝑍 ∈ ℕ ↔ (𝑝 + 𝑞) ∈ ℕ))
75, 6imbitrrid 246 . . . . . . 7 (𝑍 = (𝑝 + 𝑞) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ))
873ad2ant3 1134 . . . . . 6 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ))
98com12 32 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))
109a1i 11 . . . 4 (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)))
1110rexlimdvv 3210 . . 3 (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))
1211imp 406 . 2 ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 𝑍 ∈ ℕ)
131, 12sylbi 217 1 (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  (class class class)co 7431   + caddc 11156  cn 12264  cprime 16705   Even ceven 47549   Odd codd 47550   GoldbachEven cgbe 47670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-1cn 11211  ax-addcl 11213  ax-addass 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265  df-prm 16706  df-gbe 47673
This theorem is referenced by:  gbege6  47690
  Copyright terms: Public domain W3C validator