Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbepos Structured version   Visualization version   GIF version

Theorem gbepos 46972
Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbepos (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)

Proof of Theorem gbepos
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 46965 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
2 prmnn 16614 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3 prmnn 16614 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
4 nnaddcl 12234 . . . . . . . . 9 ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ)
52, 3, 4syl2an 595 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ)
6 eleq1 2813 . . . . . . . 8 (𝑍 = (𝑝 + 𝑞) → (𝑍 ∈ ℕ ↔ (𝑝 + 𝑞) ∈ ℕ))
75, 6imbitrrid 245 . . . . . . 7 (𝑍 = (𝑝 + 𝑞) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ))
873ad2ant3 1132 . . . . . 6 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ))
98com12 32 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))
109a1i 11 . . . 4 (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)))
1110rexlimdvv 3202 . . 3 (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))
1211imp 406 . 2 ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 𝑍 ∈ ℕ)
131, 12sylbi 216 1 (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wrex 3062  (class class class)co 7402   + caddc 11110  cn 12211  cprime 16611   Even ceven 46838   Odd codd 46839   GoldbachEven cgbe 46959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719  ax-1cn 11165  ax-addcl 11167  ax-addass 11172
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-nn 12212  df-prm 16612  df-gbe 46962
This theorem is referenced by:  gbege6  46979
  Copyright terms: Public domain W3C validator