![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbepos | Structured version Visualization version GIF version |
Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbepos | ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe 46965 | . 2 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |
2 | prmnn 16614 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
3 | prmnn 16614 | . . . . . . . . 9 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
4 | nnaddcl 12234 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ) | |
5 | 2, 3, 4 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ) |
6 | eleq1 2813 | . . . . . . . 8 ⊢ (𝑍 = (𝑝 + 𝑞) → (𝑍 ∈ ℕ ↔ (𝑝 + 𝑞) ∈ ℕ)) | |
7 | 5, 6 | imbitrrid 245 | . . . . . . 7 ⊢ (𝑍 = (𝑝 + 𝑞) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ)) |
8 | 7 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 𝑍 ∈ ℕ)) |
9 | 8 | com12 32 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ))) |
11 | 10 | rexlimdvv 3202 | . . 3 ⊢ (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 𝑍 ∈ ℕ)) |
12 | 11 | imp 406 | . 2 ⊢ ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 𝑍 ∈ ℕ) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 (class class class)co 7402 + caddc 11110 ℕcn 12211 ℙcprime 16611 Even ceven 46838 Odd codd 46839 GoldbachEven cgbe 46959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 ax-1cn 11165 ax-addcl 11167 ax-addass 11172 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12212 df-prm 16612 df-gbe 46962 |
This theorem is referenced by: gbege6 46979 |
Copyright terms: Public domain | W3C validator |