Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hb3an | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
hb.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
hb3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2144 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 3 | nf5i 2144 | . . 3 ⊢ Ⅎ𝑥𝜓 |
5 | hb.3 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
6 | 5 | nf5i 2144 | . . 3 ⊢ Ⅎ𝑥𝜒 |
7 | 2, 4, 6 | nf3an 1905 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
8 | 7 | nf5ri 2191 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: bnj982 32658 bnj1276 32694 bnj1350 32705 |
Copyright terms: Public domain | W3C validator |