MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbi2 Structured version   Visualization version   GIF version

Theorem sbi2 2298
Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbi2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))

Proof of Theorem sbi2
StepHypRef Expression
1 sbn 2276 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
2 pm2.21 123 . . . 4 𝜑 → (𝜑𝜓))
32sbimi 2076 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥](𝜑𝜓))
41, 3sylbir 234 . 2 (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜑𝜓))
5 ax-1 6 . . 3 (𝜓 → (𝜑𝜓))
65sbimi 2076 . 2 ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓))
74, 6ja 186 1 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by:  sbim  2299
  Copyright terms: Public domain W3C validator