Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbnae-o Structured version   Visualization version   GIF version

Theorem hbnae-o 38921
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Version of hbnae 2430 using ax-c11 38880. (Contributed by NM, 13-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbnae-o (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem hbnae-o
StepHypRef Expression
1 hbae-o 38896 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21hbn 2295 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178  ax-c5 38876  ax-c4 38877  ax-c7 38878  ax-c10 38879  ax-c11 38880  ax-c9 38883
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  dvelimf-o  38922  ax12indalem  38938  ax12inda2ALT  38939
  Copyright terms: Public domain W3C validator