| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbnae-o | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Version of hbnae 2432 using ax-c11 38992. (Contributed by NM, 13-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbnae-o | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae-o 39008 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | 1 | hbn 2297 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-c5 38988 ax-c4 38989 ax-c7 38990 ax-c10 38991 ax-c11 38992 ax-c9 38995 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: dvelimf-o 39034 ax12indalem 39050 ax12inda2ALT 39051 |
| Copyright terms: Public domain | W3C validator |