MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  helloworld Structured version   Visualization version   GIF version

Theorem helloworld 30444
Description: The classic "Hello world" benchmark has been translated into 314 computer programming languages - see http://helloworldcollection.de. However, for many years it eluded a proof that it is more than just a conjecture, even though a wily mathematician once claimed, "I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." Using an IBM 709 mainframe, a team of mathematicians led by Prof. Loof Lirpa, at the New College of Tahiti, were finally able to put it to rest with a remarkably short proof only four lines long. (Contributed by Prof. Loof Lirpa, 1-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
helloworld ¬ ( ∈ (𝐿𝐿0) ∧ 𝑊∅(R1𝑑))

Proof of Theorem helloworld
StepHypRef Expression
1 noel 4297 . . 3 ¬ ⟨𝑊, (R1𝑑)⟩ ∈ ∅
2 df-br 5103 . . 3 (𝑊∅(R1𝑑) ↔ ⟨𝑊, (R1𝑑)⟩ ∈ ∅)
31, 2mtbir 323 . 2 ¬ 𝑊∅(R1𝑑)
43intnan 486 1 ¬ ( ∈ (𝐿𝐿0) ∧ 𝑊∅(R1𝑑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2109  c0 4292  cop 4591   class class class wbr 5102  (class class class)co 7369  Rcnr 10794  0cc0 11044  1c1 11045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3914  df-nul 4293  df-br 5103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator