| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2107 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1554 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1797 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4294 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2820 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2708 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1800 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: nel02 4298 n0i 4299 eq0f 4306 eq0ALT 4310 rex0 4319 rab0 4345 un0 4353 in0 4354 0ss 4359 sbcel12 4370 sbcel2 4377 disj 4409 r19.2zb 4455 rabsnifsb 4682 iun0 5021 br0 5151 0xp 5729 csbxp 5730 dm0 5874 dm0rn0 5878 reldm0 5881 elimasni 6051 co02 6221 ord0eln0 6376 nlim0 6380 nsuceq0 6405 dffv3 6836 0fv 6884 elfv2ex 6886 mpo0 7454 el2mpocsbcl 8041 bropopvvv 8046 bropfvvvv 8048 tz7.44-2 8352 omordi 8507 nnmordi 8572 omabs 8592 omsmolem 8598 0er 8686 omxpenlem 9019 infn0 9227 en3lp 9543 cantnfle 9600 r1sdom 9703 r1pwss 9713 alephordi 10003 axdc3lem2 10380 zorn2lem7 10431 nlt1pi 10835 xrinf0 13275 elixx3g 13295 elfz2 13451 fzm1 13544 om2uzlti 13891 hashf1lem2 14397 sum0 15663 fsumsplit 15683 sumsplit 15710 fsum2dlem 15712 prod0 15885 fprod2dlem 15922 sadc0 16400 sadcp1 16401 saddisjlem 16410 smu01lem 16431 smu01 16432 smu02 16433 lcmf0 16580 prmreclem5 16867 vdwap0 16923 ram0 16969 0catg 17629 oduclatb 18448 0g0 18573 dfgrp2e 18877 cntzrcl 19241 pmtrfrn 19372 psgnunilem5 19408 gexdvds 19498 gsumzsplit 19841 dprdcntz2 19954 00lss 20879 dsmmfi 21680 mplcoe1 21977 mplcoe5 21980 00ply1bas 22157 maducoeval2 22560 madugsum 22563 0ntop 22825 haust1 23272 hauspwdom 23421 kqcldsat 23653 tsmssplit 24072 ustn0 24141 0met 24287 itg11 25625 itg0 25714 bddmulibl 25773 fsumharmonic 26955 ppiublem2 27147 lgsdir2lem3 27271 nulsslt 27743 nulssgt 27744 uvtx01vtx 29377 vtxdg0v 29454 dfpth2 29709 0enwwlksnge1 29844 rusgr0edg 29953 clwwlk 29962 eupth2lem1 30197 helloworld 30444 topnfbey 30448 n0lpligALT 30463 ccatf1 32920 chnccats1 32987 isarchi 33151 constrmon 33727 measvuni 34197 ddemeas 34219 sibf0 34318 signstfvneq0 34556 opelco3 35755 wsuclem 35806 unbdqndv1 36489 bj-projval 36977 bj-nuliota 37038 bj-0nmoore 37093 nlpineqsn 37389 poimirlem30 37637 pw2f1ocnv 43019 areaquad 43198 onexlimgt 43225 cantnfresb 43306 succlg 43310 oacl2g 43312 omabs2 43314 omcl2 43315 eu0 43502 ntrneikb 44076 r1rankcld 44213 en3lpVD 44827 0elaxnul 44966 omssaxinf2 44971 permaxnul 44991 permaxinf2lem 44995 supminfxr 45453 liminf0 45784 iblempty 45956 stoweidlem34 46025 sge00 46367 vonhoire 46663 prprelprb 47511 fpprbasnn 47723 stgr0 47952 |
| Copyright terms: Public domain | W3C validator |