![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2104 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1555 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1799 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4324 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2825 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2710 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 274 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 322 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 487 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1802 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 322 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ⊥wfal 1553 ∃wex 1781 [wsb 2067 ∈ wcel 2106 {cab 2709 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-dif 3951 df-nul 4323 |
This theorem is referenced by: nel02 4332 n0i 4333 eq0f 4340 eq0ALT 4344 rex0 4357 rab0 4382 un0 4390 in0 4391 0ss 4396 sbcel12 4408 sbcel2 4415 disj 4447 disjOLD 4448 r19.2zb 4495 ral0OLD 4516 rabsnifsb 4726 iun0 5065 br0 5197 0xp 5774 csbxp 5775 dm0 5920 dm0rn0 5924 reldm0 5927 elimasni 6090 co02 6259 ord0eln0 6419 nlim0 6423 nsuceq0 6447 dffv3 6887 0fv 6935 elfv2ex 6937 mpo0 7496 el2mpocsbcl 8073 bropopvvv 8078 bropfvvvv 8080 tz7.44-2 8409 omordi 8568 nnmordi 8633 omabs 8652 omsmolem 8658 0er 8742 omxpenlem 9075 infn0 9309 en3lp 9611 cantnfle 9668 r1sdom 9771 r1pwss 9781 alephordi 10071 axdc3lem2 10448 zorn2lem7 10499 nlt1pi 10903 xrinf0 13319 elixx3g 13339 elfz2 13493 fzm1 13583 om2uzlti 13917 hashf1lem2 14419 sum0 15669 fsumsplit 15689 sumsplit 15716 fsum2dlem 15718 prod0 15889 fprod2dlem 15926 sadc0 16397 sadcp1 16398 saddisjlem 16407 smu01lem 16428 smu01 16429 smu02 16430 lcmf0 16573 prmreclem5 16855 vdwap0 16911 ram0 16957 0catg 17634 oduclatb 18462 0g0 18585 dfgrp2e 18850 cntzrcl 19193 pmtrfrn 19328 psgnunilem5 19364 gexdvds 19454 gsumzsplit 19797 dprdcntz2 19910 00lss 20557 dsmmfi 21299 mplcoe1 21598 mplcoe5 21601 00ply1bas 21769 maducoeval2 22149 madugsum 22152 0ntop 22414 haust1 22863 hauspwdom 23012 kqcldsat 23244 tsmssplit 23663 ustn0 23732 0met 23879 itg11 25215 itg0 25304 bddmulibl 25363 fsumharmonic 26523 ppiublem2 26713 lgsdir2lem3 26837 nulsslt 27306 nulssgt 27307 uvtx01vtx 28692 vtxdg0v 28768 0enwwlksnge1 29156 rusgr0edg 29265 clwwlk 29274 eupth2lem1 29509 helloworld 29756 topnfbey 29760 n0lpligALT 29775 ccatf1 32153 isarchi 32369 measvuni 33281 ddemeas 33303 sibf0 33402 signstfvneq0 33652 opelco3 34821 wsuclem 34872 unbdqndv1 35476 bj-projval 35969 bj-nuliota 36030 bj-0nmoore 36085 nlpineqsn 36381 poimirlem30 36610 pw2f1ocnv 41864 areaquad 42053 onexlimgt 42080 cantnfresb 42162 succlg 42166 oacl2g 42168 omabs2 42170 omcl2 42171 eu0 42359 ntrneikb 42933 r1rankcld 43078 en3lpVD 43694 supminfxr 44259 liminf0 44594 iblempty 44766 stoweidlem34 44835 sge00 45177 vonhoire 45473 prprelprb 46270 fpprbasnn 46482 |
Copyright terms: Public domain | W3C validator |