![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2105 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1556 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1800 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4325 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2826 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2711 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 488 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1803 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2812 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ⊥wfal 1554 ∃wex 1782 [wsb 2068 ∈ wcel 2107 {cab 2710 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-dif 3952 df-nul 4324 |
This theorem is referenced by: nel02 4333 n0i 4334 eq0f 4341 eq0ALT 4345 rex0 4358 rab0 4383 un0 4391 in0 4392 0ss 4397 sbcel12 4409 sbcel2 4416 disj 4448 disjOLD 4449 r19.2zb 4496 ral0OLD 4517 rabsnifsb 4727 iun0 5066 br0 5198 0xp 5775 csbxp 5776 dm0 5921 dm0rn0 5925 reldm0 5928 elimasni 6091 co02 6260 ord0eln0 6420 nlim0 6424 nsuceq0 6448 dffv3 6888 0fv 6936 elfv2ex 6938 mpo0 7494 el2mpocsbcl 8071 bropopvvv 8076 bropfvvvv 8078 tz7.44-2 8407 omordi 8566 nnmordi 8631 omabs 8650 omsmolem 8656 0er 8740 omxpenlem 9073 infn0 9307 en3lp 9609 cantnfle 9666 r1sdom 9769 r1pwss 9779 alephordi 10069 axdc3lem2 10446 zorn2lem7 10497 nlt1pi 10901 xrinf0 13317 elixx3g 13337 elfz2 13491 fzm1 13581 om2uzlti 13915 hashf1lem2 14417 sum0 15667 fsumsplit 15687 sumsplit 15714 fsum2dlem 15716 prod0 15887 fprod2dlem 15924 sadc0 16395 sadcp1 16396 saddisjlem 16405 smu01lem 16426 smu01 16427 smu02 16428 lcmf0 16571 prmreclem5 16853 vdwap0 16909 ram0 16955 0catg 17632 oduclatb 18460 0g0 18583 dfgrp2e 18848 cntzrcl 19191 pmtrfrn 19326 psgnunilem5 19362 gexdvds 19452 gsumzsplit 19795 dprdcntz2 19908 00lss 20552 dsmmfi 21293 mplcoe1 21592 mplcoe5 21595 00ply1bas 21762 maducoeval2 22142 madugsum 22145 0ntop 22407 haust1 22856 hauspwdom 23005 kqcldsat 23237 tsmssplit 23656 ustn0 23725 0met 23872 itg11 25208 itg0 25297 bddmulibl 25356 fsumharmonic 26516 ppiublem2 26706 lgsdir2lem3 26830 nulsslt 27298 nulssgt 27299 uvtx01vtx 28654 vtxdg0v 28730 0enwwlksnge1 29118 rusgr0edg 29227 clwwlk 29236 eupth2lem1 29471 helloworld 29718 topnfbey 29722 n0lpligALT 29737 ccatf1 32115 isarchi 32328 measvuni 33212 ddemeas 33234 sibf0 33333 signstfvneq0 33583 opelco3 34746 wsuclem 34797 unbdqndv1 35384 bj-projval 35877 bj-nuliota 35938 bj-0nmoore 35993 nlpineqsn 36289 poimirlem30 36518 pw2f1ocnv 41776 areaquad 41965 onexlimgt 41992 cantnfresb 42074 succlg 42078 oacl2g 42080 omabs2 42082 omcl2 42083 eu0 42271 ntrneikb 42845 r1rankcld 42990 en3lpVD 43606 supminfxr 44174 liminf0 44509 iblempty 44681 stoweidlem34 44750 sge00 45092 vonhoire 45388 prprelprb 46185 fpprbasnn 46397 |
Copyright terms: Public domain | W3C validator |