![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2105 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1556 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1800 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4324 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2826 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2711 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 488 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1803 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2812 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ⊥wfal 1554 ∃wex 1782 [wsb 2068 ∈ wcel 2107 {cab 2710 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-dif 3951 df-nul 4323 |
This theorem is referenced by: nel02 4332 n0i 4333 eq0f 4340 eq0ALT 4344 rex0 4357 rab0 4382 un0 4390 in0 4391 0ss 4396 sbcel12 4408 sbcel2 4415 disj 4447 disjOLD 4448 r19.2zb 4495 ral0OLD 4516 rabsnifsb 4726 iun0 5065 br0 5197 0xp 5773 csbxp 5774 dm0 5919 dm0rn0 5923 reldm0 5926 elimasni 6088 co02 6257 ord0eln0 6417 nlim0 6421 nsuceq0 6445 dffv3 6885 0fv 6933 elfv2ex 6935 mpo0 7491 el2mpocsbcl 8068 bropopvvv 8073 bropfvvvv 8075 tz7.44-2 8404 omordi 8563 nnmordi 8628 omabs 8647 omsmolem 8653 0er 8737 omxpenlem 9070 infn0 9304 en3lp 9606 cantnfle 9663 r1sdom 9766 r1pwss 9776 alephordi 10066 axdc3lem2 10443 zorn2lem7 10494 nlt1pi 10898 xrinf0 13314 elixx3g 13334 elfz2 13488 fzm1 13578 om2uzlti 13912 hashf1lem2 14414 sum0 15664 fsumsplit 15684 sumsplit 15711 fsum2dlem 15713 prod0 15884 fprod2dlem 15921 sadc0 16392 sadcp1 16393 saddisjlem 16402 smu01lem 16423 smu01 16424 smu02 16425 lcmf0 16568 prmreclem5 16850 vdwap0 16906 ram0 16952 0catg 17629 oduclatb 18457 0g0 18580 dfgrp2e 18845 cntzrcl 19186 pmtrfrn 19321 psgnunilem5 19357 gexdvds 19447 gsumzsplit 19790 dprdcntz2 19903 00lss 20545 dsmmfi 21285 mplcoe1 21584 mplcoe5 21587 00ply1bas 21754 maducoeval2 22134 madugsum 22137 0ntop 22399 haust1 22848 hauspwdom 22997 kqcldsat 23229 tsmssplit 23648 ustn0 23717 0met 23864 itg11 25200 itg0 25289 bddmulibl 25348 fsumharmonic 26506 ppiublem2 26696 lgsdir2lem3 26820 nulsslt 27288 nulssgt 27289 uvtx01vtx 28644 vtxdg0v 28720 0enwwlksnge1 29108 rusgr0edg 29217 clwwlk 29226 eupth2lem1 29461 helloworld 29708 topnfbey 29712 n0lpligALT 29725 ccatf1 32103 isarchi 32316 measvuni 33201 ddemeas 33223 sibf0 33322 signstfvneq0 33572 opelco3 34735 wsuclem 34786 unbdqndv1 35373 bj-projval 35866 bj-nuliota 35927 bj-0nmoore 35982 nlpineqsn 36278 poimirlem30 36507 pw2f1ocnv 41762 areaquad 41951 onexlimgt 41978 cantnfresb 42060 succlg 42064 oacl2g 42066 omabs2 42068 omcl2 42069 eu0 42257 ntrneikb 42831 r1rankcld 42976 en3lpVD 43592 supminfxr 44161 liminf0 44496 iblempty 44668 stoweidlem34 44737 sge00 45079 vonhoire 45375 prprelprb 46172 fpprbasnn 46384 |
Copyright terms: Public domain | W3C validator |