Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2106 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1553 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1801 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4255 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2830 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2716 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 274 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 322 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1804 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2818 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 322 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ⊥wfal 1551 ∃wex 1783 [wsb 2068 ∈ wcel 2108 {cab 2715 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-dif 3886 df-nul 4254 |
This theorem is referenced by: nel02 4263 n0i 4264 eq0f 4271 eq0ALT 4275 rex0 4288 rab0 4313 un0 4321 in0 4322 0ss 4327 sbcel12 4339 sbcel2 4346 disj 4378 disjOLD 4379 r19.2zb 4423 ral0OLD 4444 rabsnifsb 4655 dfopif 4797 iun0 4987 br0 5119 0xp 5675 csbxp 5676 dm0 5818 dm0rn0 5823 reldm0 5826 elimasni 5988 co02 6153 ord0eln0 6305 nlim0 6309 nsuceq0 6331 dffv3 6752 0fv 6795 elfv2ex 6797 mpo0 7338 el2mpocsbcl 7896 bropopvvv 7901 bropfvvvv 7903 tz7.44-2 8209 omordi 8359 nnmordi 8424 omabs 8441 omsmolem 8447 0er 8493 omxpenlem 8813 en3lp 9302 cantnfle 9359 r1sdom 9463 r1pwss 9473 alephordi 9761 axdc3lem2 10138 zorn2lem7 10189 nlt1pi 10593 xrinf0 13001 elixx3g 13021 elfz2 13175 fzm1 13265 om2uzlti 13598 hashf1lem2 14098 sum0 15361 fsumsplit 15381 sumsplit 15408 fsum2dlem 15410 prod0 15581 fprod2dlem 15618 sadc0 16089 sadcp1 16090 saddisjlem 16099 smu01lem 16120 smu01 16121 smu02 16122 lcmf0 16267 prmreclem5 16549 vdwap0 16605 ram0 16651 0catg 17314 oduclatb 18140 0g0 18263 dfgrp2e 18520 cntzrcl 18848 pmtrfrn 18981 psgnunilem5 19017 gexdvds 19104 gsumzsplit 19443 dprdcntz2 19556 00lss 20118 dsmmfi 20855 mplcoe1 21148 mplcoe5 21151 00ply1bas 21321 maducoeval2 21697 madugsum 21700 0ntop 21962 haust1 22411 hauspwdom 22560 kqcldsat 22792 tsmssplit 23211 ustn0 23280 0met 23427 itg11 24760 itg0 24849 bddmulibl 24908 fsumharmonic 26066 ppiublem2 26256 lgsdir2lem3 26380 uvtx01vtx 27667 vtxdg0v 27743 0enwwlksnge1 28130 rusgr0edg 28239 clwwlk 28248 eupth2lem1 28483 helloworld 28730 topnfbey 28734 n0lpligALT 28747 ccatf1 31125 isarchi 31338 measvuni 32082 ddemeas 32104 sibf0 32201 signstfvneq0 32451 opelco3 33655 wsuclem 33746 nulsslt 33918 nulssgt 33919 unbdqndv1 34615 bj-projval 35113 bj-nuliota 35155 bj-0nmoore 35210 nlpineqsn 35506 poimirlem30 35734 pw2f1ocnv 40775 areaquad 40963 eu0 41025 ntrneikb 41593 r1rankcld 41738 en3lpVD 42354 supminfxr 42894 liminf0 43224 iblempty 43396 stoweidlem34 43465 sge00 43804 vonhoire 44100 prprelprb 44857 fpprbasnn 45069 |
Copyright terms: Public domain | W3C validator |