| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2107 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1554 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1797 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4298 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2820 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2708 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1800 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: nel02 4302 n0i 4303 eq0f 4310 eq0ALT 4314 rex0 4323 rab0 4349 un0 4357 in0 4358 0ss 4363 sbcel12 4374 sbcel2 4381 disj 4413 r19.2zb 4459 rabsnifsb 4686 iun0 5026 br0 5156 0xp 5737 csbxp 5738 dm0 5884 dm0rn0 5888 reldm0 5891 elimasni 6062 co02 6233 ord0eln0 6388 nlim0 6392 nsuceq0 6417 dffv3 6854 0fv 6902 elfv2ex 6904 mpo0 7474 el2mpocsbcl 8064 bropopvvv 8069 bropfvvvv 8071 tz7.44-2 8375 omordi 8530 nnmordi 8595 omabs 8615 omsmolem 8621 0er 8709 omxpenlem 9042 infn0 9251 en3lp 9567 cantnfle 9624 r1sdom 9727 r1pwss 9737 alephordi 10027 axdc3lem2 10404 zorn2lem7 10455 nlt1pi 10859 xrinf0 13299 elixx3g 13319 elfz2 13475 fzm1 13568 om2uzlti 13915 hashf1lem2 14421 sum0 15687 fsumsplit 15707 sumsplit 15734 fsum2dlem 15736 prod0 15909 fprod2dlem 15946 sadc0 16424 sadcp1 16425 saddisjlem 16434 smu01lem 16455 smu01 16456 smu02 16457 lcmf0 16604 prmreclem5 16891 vdwap0 16947 ram0 16993 0catg 17649 oduclatb 18466 0g0 18591 dfgrp2e 18895 cntzrcl 19259 pmtrfrn 19388 psgnunilem5 19424 gexdvds 19514 gsumzsplit 19857 dprdcntz2 19970 00lss 20847 dsmmfi 21647 mplcoe1 21944 mplcoe5 21947 00ply1bas 22124 maducoeval2 22527 madugsum 22530 0ntop 22792 haust1 23239 hauspwdom 23388 kqcldsat 23620 tsmssplit 24039 ustn0 24108 0met 24254 itg11 25592 itg0 25681 bddmulibl 25740 fsumharmonic 26922 ppiublem2 27114 lgsdir2lem3 27238 nulsslt 27709 nulssgt 27710 uvtx01vtx 29324 vtxdg0v 29401 dfpth2 29659 0enwwlksnge1 29794 rusgr0edg 29903 clwwlk 29912 eupth2lem1 30147 helloworld 30394 topnfbey 30398 n0lpligALT 30413 ccatf1 32870 chnccats1 32941 isarchi 33136 constrmon 33734 measvuni 34204 ddemeas 34226 sibf0 34325 signstfvneq0 34563 opelco3 35762 wsuclem 35813 unbdqndv1 36496 bj-projval 36984 bj-nuliota 37045 bj-0nmoore 37100 nlpineqsn 37396 poimirlem30 37644 pw2f1ocnv 43026 areaquad 43205 onexlimgt 43232 cantnfresb 43313 succlg 43317 oacl2g 43319 omabs2 43321 omcl2 43322 eu0 43509 ntrneikb 44083 r1rankcld 44220 en3lpVD 44834 0elaxnul 44973 omssaxinf2 44978 permaxnul 44998 permaxinf2lem 45002 supminfxr 45460 liminf0 45791 iblempty 45963 stoweidlem34 46032 sge00 46374 vonhoire 46670 prprelprb 47518 fpprbasnn 47730 stgr0 47959 |
| Copyright terms: Public domain | W3C validator |