| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2140, ax-11 2156, and ax-12 2176. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2105 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1553 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1796 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4317 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2825 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2713 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1799 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2809 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ⊥wfal 1551 ∃wex 1778 [wsb 2063 ∈ wcel 2107 {cab 2712 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-dif 3936 df-nul 4316 |
| This theorem is referenced by: nel02 4321 n0i 4322 eq0f 4329 eq0ALT 4333 rex0 4342 rab0 4368 un0 4376 in0 4377 0ss 4382 sbcel12 4393 sbcel2 4400 disj 4432 r19.2zb 4478 rabsnifsb 4704 iun0 5044 br0 5174 0xp 5766 csbxp 5767 dm0 5913 dm0rn0 5917 reldm0 5920 elimasni 6091 co02 6262 ord0eln0 6420 nlim0 6424 nsuceq0 6448 dffv3 6883 0fv 6931 elfv2ex 6933 mpo0 7501 el2mpocsbcl 8093 bropopvvv 8098 bropfvvvv 8100 tz7.44-2 8430 omordi 8587 nnmordi 8652 omabs 8672 omsmolem 8678 0er 8766 omxpenlem 9096 infn0 9323 en3lp 9637 cantnfle 9694 r1sdom 9797 r1pwss 9807 alephordi 10097 axdc3lem2 10474 zorn2lem7 10525 nlt1pi 10929 xrinf0 13363 elixx3g 13383 elfz2 13537 fzm1 13630 om2uzlti 13974 hashf1lem2 14478 sum0 15740 fsumsplit 15760 sumsplit 15787 fsum2dlem 15789 prod0 15962 fprod2dlem 15999 sadc0 16474 sadcp1 16475 saddisjlem 16484 smu01lem 16505 smu01 16506 smu02 16507 lcmf0 16654 prmreclem5 16941 vdwap0 16997 ram0 17043 0catg 17707 oduclatb 18526 0g0 18651 dfgrp2e 18955 cntzrcl 19319 pmtrfrn 19449 psgnunilem5 19485 gexdvds 19575 gsumzsplit 19918 dprdcntz2 20031 00lss 20912 dsmmfi 21725 mplcoe1 22022 mplcoe5 22025 00ply1bas 22208 maducoeval2 22613 madugsum 22616 0ntop 22878 haust1 23325 hauspwdom 23474 kqcldsat 23706 tsmssplit 24125 ustn0 24194 0met 24340 itg11 25681 itg0 25770 bddmulibl 25829 fsumharmonic 27010 ppiublem2 27202 lgsdir2lem3 27326 nulsslt 27797 nulssgt 27798 uvtx01vtx 29361 vtxdg0v 29438 dfpth2 29696 0enwwlksnge1 29831 rusgr0edg 29940 clwwlk 29949 eupth2lem1 30184 helloworld 30431 topnfbey 30435 n0lpligALT 30450 ccatf1 32880 chnccats1 32951 isarchi 33135 constrmon 33726 measvuni 34156 ddemeas 34178 sibf0 34277 signstfvneq0 34528 opelco3 35716 wsuclem 35767 unbdqndv1 36450 bj-projval 36938 bj-nuliota 36999 bj-0nmoore 37054 nlpineqsn 37350 poimirlem30 37598 pw2f1ocnv 42994 areaquad 43173 onexlimgt 43200 cantnfresb 43282 succlg 43286 oacl2g 43288 omabs2 43290 omcl2 43291 eu0 43478 ntrneikb 44052 r1rankcld 44195 en3lpVD 44810 0elaxnul 44945 omssaxinf2 44950 supminfxr 45420 liminf0 45753 iblempty 45925 stoweidlem34 45994 sge00 46336 vonhoire 46632 prprelprb 47450 fpprbasnn 47662 stgr0 47873 |
| Copyright terms: Public domain | W3C validator |