![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2139, ax-11 2155, and ax-12 2175. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2104 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1551 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1794 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4341 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2831 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2713 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1797 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2815 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ⊥wfal 1549 ∃wex 1776 [wsb 2062 ∈ wcel 2106 {cab 2712 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-dif 3966 df-nul 4340 |
This theorem is referenced by: nel02 4345 n0i 4346 eq0f 4353 eq0ALT 4357 rex0 4366 rab0 4392 un0 4400 in0 4401 0ss 4406 sbcel12 4417 sbcel2 4424 disj 4456 r19.2zb 4502 rabsnifsb 4727 iun0 5067 br0 5197 0xp 5787 csbxp 5788 dm0 5934 dm0rn0 5938 reldm0 5941 elimasni 6112 co02 6282 ord0eln0 6441 nlim0 6445 nsuceq0 6469 dffv3 6903 0fv 6951 elfv2ex 6953 mpo0 7518 el2mpocsbcl 8109 bropopvvv 8114 bropfvvvv 8116 tz7.44-2 8446 omordi 8603 nnmordi 8668 omabs 8688 omsmolem 8694 0er 8782 omxpenlem 9112 infn0 9338 en3lp 9652 cantnfle 9709 r1sdom 9812 r1pwss 9822 alephordi 10112 axdc3lem2 10489 zorn2lem7 10540 nlt1pi 10944 xrinf0 13377 elixx3g 13397 elfz2 13551 fzm1 13644 om2uzlti 13988 hashf1lem2 14492 sum0 15754 fsumsplit 15774 sumsplit 15801 fsum2dlem 15803 prod0 15976 fprod2dlem 16013 sadc0 16488 sadcp1 16489 saddisjlem 16498 smu01lem 16519 smu01 16520 smu02 16521 lcmf0 16668 prmreclem5 16954 vdwap0 17010 ram0 17056 0catg 17733 oduclatb 18565 0g0 18690 dfgrp2e 18994 cntzrcl 19358 pmtrfrn 19491 psgnunilem5 19527 gexdvds 19617 gsumzsplit 19960 dprdcntz2 20073 00lss 20957 dsmmfi 21776 mplcoe1 22073 mplcoe5 22076 00ply1bas 22257 maducoeval2 22662 madugsum 22665 0ntop 22927 haust1 23376 hauspwdom 23525 kqcldsat 23757 tsmssplit 24176 ustn0 24245 0met 24392 itg11 25740 itg0 25830 bddmulibl 25889 fsumharmonic 27070 ppiublem2 27262 lgsdir2lem3 27386 nulsslt 27857 nulssgt 27858 uvtx01vtx 29429 vtxdg0v 29506 0enwwlksnge1 29894 rusgr0edg 30003 clwwlk 30012 eupth2lem1 30247 helloworld 30494 topnfbey 30498 n0lpligALT 30513 ccatf1 32918 isarchi 33172 constrmon 33749 measvuni 34195 ddemeas 34217 sibf0 34316 signstfvneq0 34566 opelco3 35756 wsuclem 35807 unbdqndv1 36491 bj-projval 36979 bj-nuliota 37040 bj-0nmoore 37095 nlpineqsn 37391 poimirlem30 37637 pw2f1ocnv 43026 areaquad 43205 onexlimgt 43232 cantnfresb 43314 succlg 43318 oacl2g 43320 omabs2 43322 omcl2 43323 eu0 43510 ntrneikb 44084 r1rankcld 44227 en3lpVD 44843 supminfxr 45414 liminf0 45749 iblempty 45921 stoweidlem34 45990 sge00 46332 vonhoire 46628 prprelprb 47442 fpprbasnn 47654 stgr0 47863 |
Copyright terms: Public domain | W3C validator |