| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2144, ax-11 2160, and ax-12 2180. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2109 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1555 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1798 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4282 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2823 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2710 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1801 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2807 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ⊥wfal 1553 ∃wex 1780 [wsb 2067 ∈ wcel 2111 {cab 2709 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: nel02 4286 n0i 4287 eq0f 4294 eq0ALT 4298 rex0 4307 rab0 4333 un0 4341 in0 4342 0ss 4347 sbcel12 4358 sbcel2 4365 disj 4397 r19.2zb 4443 rabsnifsb 4672 uni0 4884 iun0 5008 br0 5138 0xp 5713 xp0 5714 csbxp 5715 dm0 5859 dm0rn0 5863 dm0rn0OLD 5864 reldm0 5867 elimasni 6039 co02 6208 ord0eln0 6362 nlim0 6366 nsuceq0 6391 dffv3 6818 0fv 6863 elfv2ex 6865 mpo0 7431 el2mpocsbcl 8015 bropopvvv 8020 bropfvvvv 8022 tz7.44-2 8326 omordi 8481 nnmordi 8546 omabs 8566 omsmolem 8572 0er 8660 omxpenlem 8991 infn0 9186 en3lp 9504 cantnfle 9561 r1sdom 9667 r1pwss 9677 alephordi 9965 axdc3lem2 10342 zorn2lem7 10393 nlt1pi 10797 xrinf0 13238 elixx3g 13258 elfz2 13414 fzm1 13507 om2uzlti 13857 hashf1lem2 14363 sum0 15628 fsumsplit 15648 sumsplit 15675 fsum2dlem 15677 prod0 15850 fprod2dlem 15887 sadc0 16365 sadcp1 16366 saddisjlem 16375 smu01lem 16396 smu01 16397 smu02 16398 lcmf0 16545 prmreclem5 16832 vdwap0 16888 ram0 16934 0catg 17594 oduclatb 18413 chnccats1 18531 chnccat 18532 0g0 18572 dfgrp2e 18876 cntzrcl 19239 pmtrfrn 19370 psgnunilem5 19406 gexdvds 19496 gsumzsplit 19839 dprdcntz2 19952 00lss 20874 dsmmfi 21675 mplcoe1 21972 mplcoe5 21975 00ply1bas 22152 maducoeval2 22555 madugsum 22558 0ntop 22820 haust1 23267 hauspwdom 23416 kqcldsat 23648 tsmssplit 24067 ustn0 24136 0met 24281 itg11 25619 itg0 25708 bddmulibl 25767 fsumharmonic 26949 ppiublem2 27141 lgsdir2lem3 27265 nulsslt 27738 nulssgt 27739 uvtx01vtx 29375 vtxdg0v 29452 dfpth2 29707 0enwwlksnge1 29842 rusgr0edg 29954 clwwlk 29963 eupth2lem1 30198 helloworld 30445 topnfbey 30449 n0lpligALT 30464 ccatf1 32930 isarchi 33151 constrmon 33757 measvuni 34227 ddemeas 34249 sibf0 34347 signstfvneq0 34585 opelco3 35819 wsuclem 35867 unbdqndv1 36550 bj-projval 37038 bj-nuliota 37099 bj-0nmoore 37154 nlpineqsn 37450 poimirlem30 37698 pw2f1ocnv 43078 areaquad 43257 onexlimgt 43284 cantnfresb 43365 succlg 43369 oacl2g 43371 omabs2 43373 omcl2 43374 eu0 43561 ntrneikb 44135 r1rankcld 44272 en3lpVD 44885 0elaxnul 45024 omssaxinf2 45029 permaxnul 45049 permaxinf2lem 45053 supminfxr 45510 liminf0 45839 iblempty 46011 stoweidlem34 46080 sge00 46422 vonhoire 46718 prprelprb 47556 fpprbasnn 47768 stgr0 47999 |
| Copyright terms: Public domain | W3C validator |