![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2141, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2106 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1551 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1795 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4354 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2836 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2718 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1798 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2820 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ⊥wfal 1549 ∃wex 1777 [wsb 2064 ∈ wcel 2108 {cab 2717 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-nul 4353 |
This theorem is referenced by: nel02 4362 n0i 4363 eq0f 4370 eq0ALT 4374 rex0 4383 rab0 4409 un0 4417 in0 4418 0ss 4423 sbcel12 4434 sbcel2 4441 disj 4473 r19.2zb 4519 rabsnifsb 4747 iun0 5085 br0 5215 0xp 5798 csbxp 5799 dm0 5945 dm0rn0 5949 reldm0 5952 elimasni 6121 co02 6291 ord0eln0 6450 nlim0 6454 nsuceq0 6478 dffv3 6916 0fv 6964 elfv2ex 6966 mpo0 7535 el2mpocsbcl 8126 bropopvvv 8131 bropfvvvv 8133 tz7.44-2 8463 omordi 8622 nnmordi 8687 omabs 8707 omsmolem 8713 0er 8801 omxpenlem 9139 infn0 9368 en3lp 9683 cantnfle 9740 r1sdom 9843 r1pwss 9853 alephordi 10143 axdc3lem2 10520 zorn2lem7 10571 nlt1pi 10975 xrinf0 13400 elixx3g 13420 elfz2 13574 fzm1 13664 om2uzlti 14001 hashf1lem2 14505 sum0 15769 fsumsplit 15789 sumsplit 15816 fsum2dlem 15818 prod0 15991 fprod2dlem 16028 sadc0 16500 sadcp1 16501 saddisjlem 16510 smu01lem 16531 smu01 16532 smu02 16533 lcmf0 16681 prmreclem5 16967 vdwap0 17023 ram0 17069 0catg 17746 oduclatb 18577 0g0 18702 dfgrp2e 19003 cntzrcl 19367 pmtrfrn 19500 psgnunilem5 19536 gexdvds 19626 gsumzsplit 19969 dprdcntz2 20082 00lss 20962 dsmmfi 21781 mplcoe1 22078 mplcoe5 22081 00ply1bas 22262 maducoeval2 22667 madugsum 22670 0ntop 22932 haust1 23381 hauspwdom 23530 kqcldsat 23762 tsmssplit 24181 ustn0 24250 0met 24397 itg11 25745 itg0 25835 bddmulibl 25894 fsumharmonic 27073 ppiublem2 27265 lgsdir2lem3 27389 nulsslt 27860 nulssgt 27861 uvtx01vtx 29432 vtxdg0v 29509 0enwwlksnge1 29897 rusgr0edg 30006 clwwlk 30015 eupth2lem1 30250 helloworld 30497 topnfbey 30501 n0lpligALT 30516 ccatf1 32915 isarchi 33162 constrmon 33734 measvuni 34178 ddemeas 34200 sibf0 34299 signstfvneq0 34549 opelco3 35738 wsuclem 35789 unbdqndv1 36474 bj-projval 36962 bj-nuliota 37023 bj-0nmoore 37078 nlpineqsn 37374 poimirlem30 37610 pw2f1ocnv 42994 areaquad 43177 onexlimgt 43204 cantnfresb 43286 succlg 43290 oacl2g 43292 omabs2 43294 omcl2 43295 eu0 43482 ntrneikb 44056 r1rankcld 44200 en3lpVD 44816 supminfxr 45379 liminf0 45714 iblempty 45886 stoweidlem34 45955 sge00 46297 vonhoire 46593 prprelprb 47391 fpprbasnn 47603 |
Copyright terms: Public domain | W3C validator |