Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2104 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
2 | fal 1553 | . . . . . 6 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1800 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
4 | dfnul4 4258 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
5 | 4 | eleq2i 2830 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
6 | df-clab 2716 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | 5, 6 | bitri 274 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
9 | 8 | intnan 487 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
10 | 9 | nex 1803 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
11 | dfclel 2817 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ⊥wfal 1551 ∃wex 1782 [wsb 2067 ∈ wcel 2106 {cab 2715 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-dif 3890 df-nul 4257 |
This theorem is referenced by: nel02 4266 n0i 4267 eq0f 4274 eq0ALT 4278 rex0 4291 rab0 4316 un0 4324 in0 4325 0ss 4330 sbcel12 4342 sbcel2 4349 disj 4381 disjOLD 4382 r19.2zb 4426 ral0OLD 4447 rabsnifsb 4658 dfopif 4800 iun0 4991 br0 5123 0xp 5685 csbxp 5686 dm0 5829 dm0rn0 5834 reldm0 5837 elimasni 5999 co02 6164 ord0eln0 6320 nlim0 6324 nsuceq0 6346 dffv3 6770 0fv 6813 elfv2ex 6815 mpo0 7360 el2mpocsbcl 7925 bropopvvv 7930 bropfvvvv 7932 tz7.44-2 8238 omordi 8397 nnmordi 8462 omabs 8481 omsmolem 8487 0er 8535 omxpenlem 8860 en3lp 9372 cantnfle 9429 r1sdom 9532 r1pwss 9542 alephordi 9830 axdc3lem2 10207 zorn2lem7 10258 nlt1pi 10662 xrinf0 13072 elixx3g 13092 elfz2 13246 fzm1 13336 om2uzlti 13670 hashf1lem2 14170 sum0 15433 fsumsplit 15453 sumsplit 15480 fsum2dlem 15482 prod0 15653 fprod2dlem 15690 sadc0 16161 sadcp1 16162 saddisjlem 16171 smu01lem 16192 smu01 16193 smu02 16194 lcmf0 16339 prmreclem5 16621 vdwap0 16677 ram0 16723 0catg 17397 oduclatb 18225 0g0 18348 dfgrp2e 18605 cntzrcl 18933 pmtrfrn 19066 psgnunilem5 19102 gexdvds 19189 gsumzsplit 19528 dprdcntz2 19641 00lss 20203 dsmmfi 20945 mplcoe1 21238 mplcoe5 21241 00ply1bas 21411 maducoeval2 21789 madugsum 21792 0ntop 22054 haust1 22503 hauspwdom 22652 kqcldsat 22884 tsmssplit 23303 ustn0 23372 0met 23519 itg11 24855 itg0 24944 bddmulibl 25003 fsumharmonic 26161 ppiublem2 26351 lgsdir2lem3 26475 uvtx01vtx 27764 vtxdg0v 27840 0enwwlksnge1 28229 rusgr0edg 28338 clwwlk 28347 eupth2lem1 28582 helloworld 28829 topnfbey 28833 n0lpligALT 28846 ccatf1 31223 isarchi 31436 measvuni 32182 ddemeas 32204 sibf0 32301 signstfvneq0 32551 opelco3 33749 wsuclem 33819 nulsslt 33991 nulssgt 33992 unbdqndv1 34688 bj-projval 35186 bj-nuliota 35228 bj-0nmoore 35283 nlpineqsn 35579 poimirlem30 35807 pw2f1ocnv 40859 areaquad 41047 eu0 41127 ntrneikb 41704 r1rankcld 41849 en3lpVD 42465 supminfxr 43004 liminf0 43334 iblempty 43506 stoweidlem34 43575 sge00 43914 vonhoire 44210 prprelprb 44969 fpprbasnn 45181 |
Copyright terms: Public domain | W3C validator |