| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2107 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1554 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1797 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4294 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2820 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2708 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1800 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: nel02 4298 n0i 4299 eq0f 4306 eq0ALT 4310 rex0 4319 rab0 4345 un0 4353 in0 4354 0ss 4359 sbcel12 4370 sbcel2 4377 disj 4409 r19.2zb 4455 rabsnifsb 4682 iun0 5021 br0 5151 0xp 5729 csbxp 5730 dm0 5874 dm0rn0 5878 reldm0 5881 elimasni 6051 co02 6221 ord0eln0 6376 nlim0 6380 nsuceq0 6405 dffv3 6836 0fv 6884 elfv2ex 6886 mpo0 7454 el2mpocsbcl 8041 bropopvvv 8046 bropfvvvv 8048 tz7.44-2 8352 omordi 8507 nnmordi 8572 omabs 8592 omsmolem 8598 0er 8686 omxpenlem 9019 infn0 9227 en3lp 9543 cantnfle 9600 r1sdom 9703 r1pwss 9713 alephordi 10003 axdc3lem2 10380 zorn2lem7 10431 nlt1pi 10835 xrinf0 13275 elixx3g 13295 elfz2 13451 fzm1 13544 om2uzlti 13891 hashf1lem2 14397 sum0 15663 fsumsplit 15683 sumsplit 15710 fsum2dlem 15712 prod0 15885 fprod2dlem 15922 sadc0 16400 sadcp1 16401 saddisjlem 16410 smu01lem 16431 smu01 16432 smu02 16433 lcmf0 16580 prmreclem5 16867 vdwap0 16923 ram0 16969 0catg 17625 oduclatb 18442 0g0 18567 dfgrp2e 18871 cntzrcl 19235 pmtrfrn 19364 psgnunilem5 19400 gexdvds 19490 gsumzsplit 19833 dprdcntz2 19946 00lss 20823 dsmmfi 21623 mplcoe1 21920 mplcoe5 21923 00ply1bas 22100 maducoeval2 22503 madugsum 22506 0ntop 22768 haust1 23215 hauspwdom 23364 kqcldsat 23596 tsmssplit 24015 ustn0 24084 0met 24230 itg11 25568 itg0 25657 bddmulibl 25716 fsumharmonic 26898 ppiublem2 27090 lgsdir2lem3 27214 nulsslt 27685 nulssgt 27686 uvtx01vtx 29300 vtxdg0v 29377 dfpth2 29632 0enwwlksnge1 29767 rusgr0edg 29876 clwwlk 29885 eupth2lem1 30120 helloworld 30367 topnfbey 30371 n0lpligALT 30386 ccatf1 32843 chnccats1 32914 isarchi 33109 constrmon 33707 measvuni 34177 ddemeas 34199 sibf0 34298 signstfvneq0 34536 opelco3 35735 wsuclem 35786 unbdqndv1 36469 bj-projval 36957 bj-nuliota 37018 bj-0nmoore 37073 nlpineqsn 37369 poimirlem30 37617 pw2f1ocnv 42999 areaquad 43178 onexlimgt 43205 cantnfresb 43286 succlg 43290 oacl2g 43292 omabs2 43294 omcl2 43295 eu0 43482 ntrneikb 44056 r1rankcld 44193 en3lpVD 44807 0elaxnul 44946 omssaxinf2 44951 permaxnul 44971 permaxinf2lem 44975 supminfxr 45433 liminf0 45764 iblempty 45936 stoweidlem34 46005 sge00 46347 vonhoire 46643 prprelprb 47491 fpprbasnn 47703 stgr0 47932 |
| Copyright terms: Public domain | W3C validator |