| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2107 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1554 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1797 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4315 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2827 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2715 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1800 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2714 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: nel02 4319 n0i 4320 eq0f 4327 eq0ALT 4331 rex0 4340 rab0 4366 un0 4374 in0 4375 0ss 4380 sbcel12 4391 sbcel2 4398 disj 4430 r19.2zb 4476 rabsnifsb 4703 iun0 5043 br0 5173 0xp 5758 csbxp 5759 dm0 5905 dm0rn0 5909 reldm0 5912 elimasni 6083 co02 6254 ord0eln0 6413 nlim0 6417 nsuceq0 6442 dffv3 6877 0fv 6925 elfv2ex 6927 mpo0 7497 el2mpocsbcl 8089 bropopvvv 8094 bropfvvvv 8096 tz7.44-2 8426 omordi 8583 nnmordi 8648 omabs 8668 omsmolem 8674 0er 8762 omxpenlem 9092 infn0 9317 en3lp 9633 cantnfle 9690 r1sdom 9793 r1pwss 9803 alephordi 10093 axdc3lem2 10470 zorn2lem7 10521 nlt1pi 10925 xrinf0 13360 elixx3g 13380 elfz2 13536 fzm1 13629 om2uzlti 13973 hashf1lem2 14479 sum0 15742 fsumsplit 15762 sumsplit 15789 fsum2dlem 15791 prod0 15964 fprod2dlem 16001 sadc0 16478 sadcp1 16479 saddisjlem 16488 smu01lem 16509 smu01 16510 smu02 16511 lcmf0 16658 prmreclem5 16945 vdwap0 17001 ram0 17047 0catg 17705 oduclatb 18522 0g0 18647 dfgrp2e 18951 cntzrcl 19315 pmtrfrn 19444 psgnunilem5 19480 gexdvds 19570 gsumzsplit 19913 dprdcntz2 20026 00lss 20903 dsmmfi 21703 mplcoe1 22000 mplcoe5 22003 00ply1bas 22180 maducoeval2 22583 madugsum 22586 0ntop 22848 haust1 23295 hauspwdom 23444 kqcldsat 23676 tsmssplit 24095 ustn0 24164 0met 24310 itg11 25649 itg0 25738 bddmulibl 25797 fsumharmonic 26979 ppiublem2 27171 lgsdir2lem3 27295 nulsslt 27766 nulssgt 27767 uvtx01vtx 29381 vtxdg0v 29458 dfpth2 29716 0enwwlksnge1 29851 rusgr0edg 29960 clwwlk 29969 eupth2lem1 30204 helloworld 30451 topnfbey 30455 n0lpligALT 30470 ccatf1 32929 chnccats1 33000 isarchi 33185 constrmon 33783 measvuni 34250 ddemeas 34272 sibf0 34371 signstfvneq0 34609 opelco3 35797 wsuclem 35848 unbdqndv1 36531 bj-projval 37019 bj-nuliota 37080 bj-0nmoore 37135 nlpineqsn 37431 poimirlem30 37679 pw2f1ocnv 43036 areaquad 43215 onexlimgt 43242 cantnfresb 43323 succlg 43327 oacl2g 43329 omabs2 43331 omcl2 43332 eu0 43519 ntrneikb 44093 r1rankcld 44230 en3lpVD 44844 0elaxnul 44983 omssaxinf2 44988 permaxnul 45008 permaxinf2lem 45012 supminfxr 45471 liminf0 45802 iblempty 45974 stoweidlem34 46043 sge00 46385 vonhoire 46681 prprelprb 47511 fpprbasnn 47723 stgr0 47952 |
| Copyright terms: Public domain | W3C validator |