| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noel | Structured version Visualization version GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2107 | . . . . . 6 ⊢ (∀𝑦 ¬ ⊥ → ¬ [𝑥 / 𝑦]⊥) | |
| 2 | fal 1554 | . . . . . 6 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1797 | . . . . 5 ⊢ ¬ [𝑥 / 𝑦]⊥ |
| 4 | dfnul4 4286 | . . . . . . 7 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 5 | 4 | eleq2i 2820 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) |
| 6 | df-clab 2708 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ [𝑥 / 𝑦]⊥) |
| 8 | 3, 7 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan 486 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 10 | 9 | nex 1800 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
| 11 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: nel02 4290 n0i 4291 eq0f 4298 eq0ALT 4302 rex0 4311 rab0 4337 un0 4345 in0 4346 0ss 4351 sbcel12 4362 sbcel2 4369 disj 4401 r19.2zb 4447 rabsnifsb 4674 iun0 5011 br0 5141 0xp 5718 csbxp 5719 dm0 5863 dm0rn0 5867 reldm0 5870 elimasni 6042 co02 6209 ord0eln0 6363 nlim0 6367 nsuceq0 6392 dffv3 6818 0fv 6864 elfv2ex 6866 mpo0 7434 el2mpocsbcl 8018 bropopvvv 8023 bropfvvvv 8025 tz7.44-2 8329 omordi 8484 nnmordi 8549 omabs 8569 omsmolem 8575 0er 8663 omxpenlem 8995 infn0 9191 en3lp 9510 cantnfle 9567 r1sdom 9670 r1pwss 9680 alephordi 9968 axdc3lem2 10345 zorn2lem7 10396 nlt1pi 10800 xrinf0 13241 elixx3g 13261 elfz2 13417 fzm1 13510 om2uzlti 13857 hashf1lem2 14363 sum0 15628 fsumsplit 15648 sumsplit 15675 fsum2dlem 15677 prod0 15850 fprod2dlem 15887 sadc0 16365 sadcp1 16366 saddisjlem 16375 smu01lem 16396 smu01 16397 smu02 16398 lcmf0 16545 prmreclem5 16832 vdwap0 16888 ram0 16934 0catg 17594 oduclatb 18413 0g0 18538 dfgrp2e 18842 cntzrcl 19206 pmtrfrn 19337 psgnunilem5 19373 gexdvds 19463 gsumzsplit 19806 dprdcntz2 19919 00lss 20844 dsmmfi 21645 mplcoe1 21942 mplcoe5 21945 00ply1bas 22122 maducoeval2 22525 madugsum 22528 0ntop 22790 haust1 23237 hauspwdom 23386 kqcldsat 23618 tsmssplit 24037 ustn0 24106 0met 24252 itg11 25590 itg0 25679 bddmulibl 25738 fsumharmonic 26920 ppiublem2 27112 lgsdir2lem3 27236 nulsslt 27708 nulssgt 27709 uvtx01vtx 29342 vtxdg0v 29419 dfpth2 29674 0enwwlksnge1 29809 rusgr0edg 29918 clwwlk 29927 eupth2lem1 30162 helloworld 30409 topnfbey 30413 n0lpligALT 30428 ccatf1 32890 chnccats1 32957 isarchi 33124 constrmon 33711 measvuni 34181 ddemeas 34203 sibf0 34302 signstfvneq0 34540 opelco3 35748 wsuclem 35799 unbdqndv1 36482 bj-projval 36970 bj-nuliota 37031 bj-0nmoore 37086 nlpineqsn 37382 poimirlem30 37630 pw2f1ocnv 43010 areaquad 43189 onexlimgt 43216 cantnfresb 43297 succlg 43301 oacl2g 43303 omabs2 43305 omcl2 43306 eu0 43493 ntrneikb 44067 r1rankcld 44204 en3lpVD 44818 0elaxnul 44957 omssaxinf2 44962 permaxnul 44982 permaxinf2lem 44986 supminfxr 45443 liminf0 45774 iblempty 45946 stoweidlem34 46015 sge00 46357 vonhoire 46653 prprelprb 47501 fpprbasnn 47713 stgr0 47944 |
| Copyright terms: Public domain | W3C validator |