| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvcomi | Structured version Visualization version GIF version | ||
| Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
| hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvcomi | ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | ax-hvcom 30987 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℋchba 30905 +ℎ cva 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvcom 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: hvadd12i 31043 hvnegdii 31048 norm3difi 31133 normpar2i 31142 nonbooli 31637 lnophmlem2 32003 |
| Copyright terms: Public domain | W3C validator |