Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvcomi | Structured version Visualization version GIF version |
Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvcomi | ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | ax-hvcom 28883 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 (class class class)co 7150 ℋchba 28801 +ℎ cva 28802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvcom 28883 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: hvadd12i 28939 hvnegdii 28944 norm3difi 29029 normpar2i 29038 nonbooli 29533 lnophmlem2 29899 |
Copyright terms: Public domain | W3C validator |