HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Structured version   Visualization version   GIF version

Theorem nonbooli 30301
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻𝐹) ∨ (𝐻𝐺)) = 0 but (𝐻 ∩ (𝐹 𝐺)) ≠ 0. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1 𝐴 ∈ ℋ
nonbool.2 𝐵 ∈ ℋ
nonbool.3 𝐹 = (span‘{𝐴})
nonbool.4 𝐺 = (span‘{𝐵})
nonbool.5 𝐻 = (span‘{(𝐴 + 𝐵)})
Assertion
Ref Expression
nonbooli (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13 𝐴 ∈ ℋ
2 nonbool.2 . . . . . . . . . . . . 13 𝐵 ∈ ℋ
31, 2hvaddcli 29668 . . . . . . . . . . . 12 (𝐴 + 𝐵) ∈ ℋ
4 spansnid 30213 . . . . . . . . . . . 12 ((𝐴 + 𝐵) ∈ ℋ → (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)}))
53, 4ax-mp 5 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)})
6 nonbool.5 . . . . . . . . . . 11 𝐻 = (span‘{(𝐴 + 𝐵)})
75, 6eleqtrri 2837 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ 𝐻
8 nonbool.3 . . . . . . . . . . . . 13 𝐹 = (span‘{𝐴})
91spansnchi 30212 . . . . . . . . . . . . . 14 (span‘{𝐴}) ∈ C
109chshii 29877 . . . . . . . . . . . . 13 (span‘{𝐴}) ∈ S
118, 10eqeltri 2834 . . . . . . . . . . . 12 𝐹S
12 nonbool.4 . . . . . . . . . . . . 13 𝐺 = (span‘{𝐵})
132spansnchi 30212 . . . . . . . . . . . . . 14 (span‘{𝐵}) ∈ C
1413chshii 29877 . . . . . . . . . . . . 13 (span‘{𝐵}) ∈ S
1512, 14eqeltri 2834 . . . . . . . . . . . 12 𝐺S
1611, 15shsleji 30020 . . . . . . . . . . 11 (𝐹 + 𝐺) ⊆ (𝐹 𝐺)
17 spansnid 30213 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
181, 17ax-mp 5 . . . . . . . . . . . . 13 𝐴 ∈ (span‘{𝐴})
1918, 8eleqtrri 2837 . . . . . . . . . . . 12 𝐴𝐹
20 spansnid 30213 . . . . . . . . . . . . . 14 (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵}))
212, 20ax-mp 5 . . . . . . . . . . . . 13 𝐵 ∈ (span‘{𝐵})
2221, 12eleqtrri 2837 . . . . . . . . . . . 12 𝐵𝐺
2311, 15shsvai 30014 . . . . . . . . . . . 12 ((𝐴𝐹𝐵𝐺) → (𝐴 + 𝐵) ∈ (𝐹 + 𝐺))
2419, 22, 23mp2an 690 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (𝐹 + 𝐺)
2516, 24sselii 3933 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ (𝐹 𝐺)
26 elin 3918 . . . . . . . . . 10 ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ ((𝐴 + 𝐵) ∈ 𝐻 ∧ (𝐴 + 𝐵) ∈ (𝐹 𝐺)))
277, 25, 26mpbir2an 709 . . . . . . . . 9 (𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺))
28 eleq2 2826 . . . . . . . . 9 ((𝐻 ∩ (𝐹 𝐺)) = 0 → ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ (𝐴 + 𝐵) ∈ 0))
2927, 28mpbii 232 . . . . . . . 8 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ 0)
30 elch0 29904 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 0 ↔ (𝐴 + 𝐵) = 0)
3129, 30sylib 217 . . . . . . 7 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) = 0)
32 ch0 29878 . . . . . . . 8 ((span‘{𝐴}) ∈ C → 0 ∈ (span‘{𝐴}))
339, 32ax-mp 5 . . . . . . 7 0 ∈ (span‘{𝐴})
3431, 33eqeltrdi 2846 . . . . . 6 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ (span‘{𝐴}))
358eleq2i 2829 . . . . . . 7 (𝐵𝐹𝐵 ∈ (span‘{𝐴}))
36 sumspansn 30299 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})))
371, 2, 36mp2an 690 . . . . . . 7 ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))
3835, 37bitr4i 278 . . . . . 6 (𝐵𝐹 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐴}))
3934, 38sylibr 233 . . . . 5 ((𝐻 ∩ (𝐹 𝐺)) = 0𝐵𝐹)
4039con3i 154 . . . 4 𝐵𝐹 → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
4140adantl 483 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
426, 8ineq12i 4162 . . . . . 6 (𝐻𝐹) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴}))
433, 1spansnm0i 30300 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4438, 43sylnbi 330 . . . . . 6 𝐵𝐹 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4542, 44eqtrid 2789 . . . . 5 𝐵𝐹 → (𝐻𝐹) = 0)
466, 12ineq12i 4162 . . . . . 6 (𝐻𝐺) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵}))
47 sumspansn 30299 . . . . . . . . 9 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})))
482, 1, 47mp2an 690 . . . . . . . 8 ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))
491, 2hvcomi 29669 . . . . . . . . 9 (𝐴 + 𝐵) = (𝐵 + 𝐴)
5049eleq1i 2828 . . . . . . . 8 ((𝐴 + 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 + 𝐴) ∈ (span‘{𝐵}))
5112eleq2i 2829 . . . . . . . 8 (𝐴𝐺𝐴 ∈ (span‘{𝐵}))
5248, 50, 513bitr4ri 304 . . . . . . 7 (𝐴𝐺 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐵}))
533, 2spansnm0i 30300 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5452, 53sylnbi 330 . . . . . 6 𝐴𝐺 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5546, 54eqtrid 2789 . . . . 5 𝐴𝐺 → (𝐻𝐺) = 0)
5645, 55oveqan12rd 7362 . . . 4 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = (0 0))
57 h0elch 29905 . . . . 5 0C
5857chj0i 30105 . . . 4 (0 0) = 0
5956, 58eqtrdi 2793 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = 0)
60 eqeq2 2749 . . . . 5 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → ((𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ (𝐻 ∩ (𝐹 𝐺)) = 0))
6160notbid 318 . . . 4 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → (¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = 0))
6261biimparc 481 . . 3 ((¬ (𝐻 ∩ (𝐹 𝐺)) = 0 ∧ ((𝐻𝐹) ∨ (𝐻𝐺)) = 0) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6341, 59, 62syl2anc 585 . 2 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
64 ioran 982 . 2 (¬ (𝐴𝐺𝐵𝐹) ↔ (¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹))
65 df-ne 2942 . 2 ((𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6663, 64, 653imtr4i 292 1 (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845   = wceq 1541  wcel 2106  wne 2941  cin 3901  {csn 4578  cfv 6484  (class class class)co 7342  chba 29569   + cva 29570  0c0v 29574   S csh 29578   C cch 29579   + cph 29581  spancspn 29582   chj 29583  0c0h 29585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cc 10297  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055  ax-addf 11056  ax-mulf 11057  ax-hilex 29649  ax-hfvadd 29650  ax-hvcom 29651  ax-hvass 29652  ax-hv0cl 29653  ax-hvaddid 29654  ax-hfvmul 29655  ax-hvmulid 29656  ax-hvmulass 29657  ax-hvdistr1 29658  ax-hvdistr2 29659  ax-hvmul0 29660  ax-hfi 29729  ax-his1 29732  ax-his2 29733  ax-his3 29734  ax-his4 29735  ax-hcompl 29852
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-oadd 8376  df-omul 8377  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-acn 9804  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ioo 13189  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-fl 13618  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-rlim 15298  df-sum 15498  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-starv 17075  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-unif 17083  df-hom 17084  df-cco 17085  df-rest 17231  df-topn 17232  df-0g 17250  df-gsum 17251  df-topgen 17252  df-pt 17253  df-prds 17256  df-xrs 17311  df-qtop 17316  df-imas 17317  df-xps 17319  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-mulg 18798  df-cntz 19020  df-cmn 19484  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-cn 22484  df-cnp 22485  df-lm 22486  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cfil 24525  df-cau 24526  df-cmet 24527  df-grpo 29143  df-gid 29144  df-ginv 29145  df-gdiv 29146  df-ablo 29195  df-vc 29209  df-nv 29242  df-va 29245  df-ba 29246  df-sm 29247  df-0v 29248  df-vs 29249  df-nmcv 29250  df-ims 29251  df-dip 29351  df-ssp 29372  df-ph 29463  df-cbn 29513  df-hnorm 29618  df-hba 29619  df-hvsub 29621  df-hlim 29622  df-hcau 29623  df-sh 29857  df-ch 29871  df-oc 29902  df-ch0 29903  df-shs 29958  df-span 29959  df-chj 29960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator