| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nonbooli | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nonbool.1 | ⊢ 𝐴 ∈ ℋ |
| nonbool.2 | ⊢ 𝐵 ∈ ℋ |
| nonbool.3 | ⊢ 𝐹 = (span‘{𝐴}) |
| nonbool.4 | ⊢ 𝐺 = (span‘{𝐵}) |
| nonbool.5 | ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) |
| Ref | Expression |
|---|---|
| nonbooli | ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonbool.1 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ ℋ | |
| 2 | nonbool.2 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvaddcli 30947 | . . . . . . . . . . . 12 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 4 | spansnid 31492 | . . . . . . . . . . . 12 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)})) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)}) |
| 6 | nonbool.5 | . . . . . . . . . . 11 ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) | |
| 7 | 5, 6 | eleqtrri 2827 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ 𝐻 |
| 8 | nonbool.3 | . . . . . . . . . . . . 13 ⊢ 𝐹 = (span‘{𝐴}) | |
| 9 | 1 | spansnchi 31491 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐴}) ∈ Cℋ |
| 10 | 9 | chshii 31156 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐴}) ∈ Sℋ |
| 11 | 8, 10 | eqeltri 2824 | . . . . . . . . . . . 12 ⊢ 𝐹 ∈ Sℋ |
| 12 | nonbool.4 | . . . . . . . . . . . . 13 ⊢ 𝐺 = (span‘{𝐵}) | |
| 13 | 2 | spansnchi 31491 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐵}) ∈ Cℋ |
| 14 | 13 | chshii 31156 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐵}) ∈ Sℋ |
| 15 | 12, 14 | eqeltri 2824 | . . . . . . . . . . . 12 ⊢ 𝐺 ∈ Sℋ |
| 16 | 11, 15 | shsleji 31299 | . . . . . . . . . . 11 ⊢ (𝐹 +ℋ 𝐺) ⊆ (𝐹 ∨ℋ 𝐺) |
| 17 | spansnid 31492 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴})) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ (span‘{𝐴}) |
| 19 | 18, 8 | eleqtrri 2827 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ 𝐹 |
| 20 | spansnid 31492 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵})) | |
| 21 | 2, 20 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ (span‘{𝐵}) |
| 22 | 21, 12 | eleqtrri 2827 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ 𝐺 |
| 23 | 11, 15 | shsvai 31293 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺)) |
| 24 | 19, 22, 23 | mp2an 692 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺) |
| 25 | 16, 24 | sselii 3943 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺) |
| 26 | elin 3930 | . . . . . . . . . 10 ⊢ ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ ((𝐴 +ℎ 𝐵) ∈ 𝐻 ∧ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺))) | |
| 27 | 7, 25, 26 | mpbir2an 711 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) |
| 28 | eleq2 2817 | . . . . . . . . 9 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ (𝐴 +ℎ 𝐵) ∈ 0ℋ)) | |
| 29 | 27, 28 | mpbii 233 | . . . . . . . 8 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ 0ℋ) |
| 30 | elch0 31183 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ 0ℋ ↔ (𝐴 +ℎ 𝐵) = 0ℎ) | |
| 31 | 29, 30 | sylib 218 | . . . . . . 7 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) = 0ℎ) |
| 32 | ch0 31157 | . . . . . . . 8 ⊢ ((span‘{𝐴}) ∈ Cℋ → 0ℎ ∈ (span‘{𝐴})) | |
| 33 | 9, 32 | ax-mp 5 | . . . . . . 7 ⊢ 0ℎ ∈ (span‘{𝐴}) |
| 34 | 31, 33 | eqeltrdi 2836 | . . . . . 6 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 35 | 8 | eleq2i 2820 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ (span‘{𝐴})) |
| 36 | sumspansn 31578 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | |
| 37 | 1, 2, 36 | mp2an 692 | . . . . . . 7 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})) |
| 38 | 35, 37 | bitr4i 278 | . . . . . 6 ⊢ (𝐵 ∈ 𝐹 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 39 | 34, 38 | sylibr 234 | . . . . 5 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → 𝐵 ∈ 𝐹) |
| 40 | 39 | con3i 154 | . . . 4 ⊢ (¬ 𝐵 ∈ 𝐹 → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 41 | 40 | adantl 481 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 42 | 6, 8 | ineq12i 4181 | . . . . . 6 ⊢ (𝐻 ∩ 𝐹) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) |
| 43 | 3, 1 | spansnm0i 31579 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 44 | 38, 43 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐵 ∈ 𝐹 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 45 | 42, 44 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐵 ∈ 𝐹 → (𝐻 ∩ 𝐹) = 0ℋ) |
| 46 | 6, 12 | ineq12i 4181 | . . . . . 6 ⊢ (𝐻 ∩ 𝐺) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) |
| 47 | sumspansn 31578 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))) | |
| 48 | 2, 1, 47 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})) |
| 49 | 1, 2 | hvcomi 30948 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 50 | 49 | eleq1i 2819 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 +ℎ 𝐴) ∈ (span‘{𝐵})) |
| 51 | 12 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐺 ↔ 𝐴 ∈ (span‘{𝐵})) |
| 52 | 48, 50, 51 | 3bitr4ri 304 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐺 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵})) |
| 53 | 3, 2 | spansnm0i 31579 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 54 | 52, 53 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 𝐺 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 55 | 46, 54 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐺 → (𝐻 ∩ 𝐺) = 0ℋ) |
| 56 | 45, 55 | oveqan12rd 7407 | . . . 4 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = (0ℋ ∨ℋ 0ℋ)) |
| 57 | h0elch 31184 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
| 58 | 57 | chj0i 31384 | . . . 4 ⊢ (0ℋ ∨ℋ 0ℋ) = 0ℋ |
| 59 | 56, 58 | eqtrdi 2780 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) |
| 60 | eqeq2 2741 | . . . . 5 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) | |
| 61 | 60 | notbid 318 | . . . 4 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → (¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) |
| 62 | 61 | biimparc 479 | . . 3 ⊢ ((¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ ∧ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 63 | 41, 59, 62 | syl2anc 584 | . 2 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 64 | ioran 985 | . 2 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) ↔ (¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹)) | |
| 65 | df-ne 2926 | . 2 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | |
| 66 | 63, 64, 65 | 3imtr4i 292 | 1 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 +ℎ cva 30849 0ℎc0v 30853 Sℋ csh 30857 Cℋ cch 30858 +ℋ cph 30860 spancspn 30861 ∨ℋ chj 30862 0ℋc0h 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-lm 23116 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-ssp 30651 df-ph 30742 df-cbn 30792 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-shs 31237 df-span 31238 df-chj 31239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |