| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nonbooli | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nonbool.1 | ⊢ 𝐴 ∈ ℋ |
| nonbool.2 | ⊢ 𝐵 ∈ ℋ |
| nonbool.3 | ⊢ 𝐹 = (span‘{𝐴}) |
| nonbool.4 | ⊢ 𝐺 = (span‘{𝐵}) |
| nonbool.5 | ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) |
| Ref | Expression |
|---|---|
| nonbooli | ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonbool.1 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ ℋ | |
| 2 | nonbool.2 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvaddcli 31000 | . . . . . . . . . . . 12 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 4 | spansnid 31545 | . . . . . . . . . . . 12 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)})) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)}) |
| 6 | nonbool.5 | . . . . . . . . . . 11 ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) | |
| 7 | 5, 6 | eleqtrri 2832 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ 𝐻 |
| 8 | nonbool.3 | . . . . . . . . . . . . 13 ⊢ 𝐹 = (span‘{𝐴}) | |
| 9 | 1 | spansnchi 31544 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐴}) ∈ Cℋ |
| 10 | 9 | chshii 31209 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐴}) ∈ Sℋ |
| 11 | 8, 10 | eqeltri 2829 | . . . . . . . . . . . 12 ⊢ 𝐹 ∈ Sℋ |
| 12 | nonbool.4 | . . . . . . . . . . . . 13 ⊢ 𝐺 = (span‘{𝐵}) | |
| 13 | 2 | spansnchi 31544 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐵}) ∈ Cℋ |
| 14 | 13 | chshii 31209 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐵}) ∈ Sℋ |
| 15 | 12, 14 | eqeltri 2829 | . . . . . . . . . . . 12 ⊢ 𝐺 ∈ Sℋ |
| 16 | 11, 15 | shsleji 31352 | . . . . . . . . . . 11 ⊢ (𝐹 +ℋ 𝐺) ⊆ (𝐹 ∨ℋ 𝐺) |
| 17 | spansnid 31545 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴})) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ (span‘{𝐴}) |
| 19 | 18, 8 | eleqtrri 2832 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ 𝐹 |
| 20 | spansnid 31545 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵})) | |
| 21 | 2, 20 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ (span‘{𝐵}) |
| 22 | 21, 12 | eleqtrri 2832 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ 𝐺 |
| 23 | 11, 15 | shsvai 31346 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺)) |
| 24 | 19, 22, 23 | mp2an 692 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺) |
| 25 | 16, 24 | sselii 3927 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺) |
| 26 | elin 3914 | . . . . . . . . . 10 ⊢ ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ ((𝐴 +ℎ 𝐵) ∈ 𝐻 ∧ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺))) | |
| 27 | 7, 25, 26 | mpbir2an 711 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) |
| 28 | eleq2 2822 | . . . . . . . . 9 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ (𝐴 +ℎ 𝐵) ∈ 0ℋ)) | |
| 29 | 27, 28 | mpbii 233 | . . . . . . . 8 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ 0ℋ) |
| 30 | elch0 31236 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ 0ℋ ↔ (𝐴 +ℎ 𝐵) = 0ℎ) | |
| 31 | 29, 30 | sylib 218 | . . . . . . 7 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) = 0ℎ) |
| 32 | ch0 31210 | . . . . . . . 8 ⊢ ((span‘{𝐴}) ∈ Cℋ → 0ℎ ∈ (span‘{𝐴})) | |
| 33 | 9, 32 | ax-mp 5 | . . . . . . 7 ⊢ 0ℎ ∈ (span‘{𝐴}) |
| 34 | 31, 33 | eqeltrdi 2841 | . . . . . 6 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 35 | 8 | eleq2i 2825 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ (span‘{𝐴})) |
| 36 | sumspansn 31631 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | |
| 37 | 1, 2, 36 | mp2an 692 | . . . . . . 7 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})) |
| 38 | 35, 37 | bitr4i 278 | . . . . . 6 ⊢ (𝐵 ∈ 𝐹 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 39 | 34, 38 | sylibr 234 | . . . . 5 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → 𝐵 ∈ 𝐹) |
| 40 | 39 | con3i 154 | . . . 4 ⊢ (¬ 𝐵 ∈ 𝐹 → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 41 | 40 | adantl 481 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 42 | 6, 8 | ineq12i 4167 | . . . . . 6 ⊢ (𝐻 ∩ 𝐹) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) |
| 43 | 3, 1 | spansnm0i 31632 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 44 | 38, 43 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐵 ∈ 𝐹 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 45 | 42, 44 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝐵 ∈ 𝐹 → (𝐻 ∩ 𝐹) = 0ℋ) |
| 46 | 6, 12 | ineq12i 4167 | . . . . . 6 ⊢ (𝐻 ∩ 𝐺) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) |
| 47 | sumspansn 31631 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))) | |
| 48 | 2, 1, 47 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})) |
| 49 | 1, 2 | hvcomi 31001 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 50 | 49 | eleq1i 2824 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 +ℎ 𝐴) ∈ (span‘{𝐵})) |
| 51 | 12 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐺 ↔ 𝐴 ∈ (span‘{𝐵})) |
| 52 | 48, 50, 51 | 3bitr4ri 304 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐺 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵})) |
| 53 | 3, 2 | spansnm0i 31632 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 54 | 52, 53 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 𝐺 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 55 | 46, 54 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐺 → (𝐻 ∩ 𝐺) = 0ℋ) |
| 56 | 45, 55 | oveqan12rd 7372 | . . . 4 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = (0ℋ ∨ℋ 0ℋ)) |
| 57 | h0elch 31237 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
| 58 | 57 | chj0i 31437 | . . . 4 ⊢ (0ℋ ∨ℋ 0ℋ) = 0ℋ |
| 59 | 56, 58 | eqtrdi 2784 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) |
| 60 | eqeq2 2745 | . . . . 5 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) | |
| 61 | 60 | notbid 318 | . . . 4 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → (¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) |
| 62 | 61 | biimparc 479 | . . 3 ⊢ ((¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ ∧ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 63 | 41, 59, 62 | syl2anc 584 | . 2 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 64 | ioran 985 | . 2 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) ↔ (¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹)) | |
| 65 | df-ne 2930 | . 2 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | |
| 66 | 63, 64, 65 | 3imtr4i 292 | 1 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 {csn 4575 ‘cfv 6486 (class class class)co 7352 ℋchba 30901 +ℎ cva 30902 0ℎc0v 30906 Sℋ csh 30910 Cℋ cch 30911 +ℋ cph 30913 spancspn 30914 ∨ℋ chj 30915 0ℋc0h 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 ax-hv0cl 30985 ax-hvaddid 30986 ax-hfvmul 30987 ax-hvmulid 30988 ax-hvmulass 30989 ax-hvdistr1 30990 ax-hvdistr2 30991 ax-hvmul0 30992 ax-hfi 31061 ax-his1 31064 ax-his2 31065 ax-his3 31066 ax-his4 31067 ax-hcompl 31184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-cn 23143 df-cnp 23144 df-lm 23145 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cfil 25183 df-cau 25184 df-cmet 25185 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 df-ims 30583 df-dip 30683 df-ssp 30704 df-ph 30795 df-cbn 30845 df-hnorm 30950 df-hba 30951 df-hvsub 30953 df-hlim 30954 df-hcau 30955 df-sh 31189 df-ch 31203 df-oc 31234 df-ch0 31235 df-shs 31290 df-span 31291 df-chj 31292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |