| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nonbooli | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nonbool.1 | ⊢ 𝐴 ∈ ℋ |
| nonbool.2 | ⊢ 𝐵 ∈ ℋ |
| nonbool.3 | ⊢ 𝐹 = (span‘{𝐴}) |
| nonbool.4 | ⊢ 𝐺 = (span‘{𝐵}) |
| nonbool.5 | ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) |
| Ref | Expression |
|---|---|
| nonbooli | ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonbool.1 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ ℋ | |
| 2 | nonbool.2 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvaddcli 30954 | . . . . . . . . . . . 12 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 4 | spansnid 31499 | . . . . . . . . . . . 12 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)})) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)}) |
| 6 | nonbool.5 | . . . . . . . . . . 11 ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) | |
| 7 | 5, 6 | eleqtrri 2828 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ 𝐻 |
| 8 | nonbool.3 | . . . . . . . . . . . . 13 ⊢ 𝐹 = (span‘{𝐴}) | |
| 9 | 1 | spansnchi 31498 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐴}) ∈ Cℋ |
| 10 | 9 | chshii 31163 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐴}) ∈ Sℋ |
| 11 | 8, 10 | eqeltri 2825 | . . . . . . . . . . . 12 ⊢ 𝐹 ∈ Sℋ |
| 12 | nonbool.4 | . . . . . . . . . . . . 13 ⊢ 𝐺 = (span‘{𝐵}) | |
| 13 | 2 | spansnchi 31498 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐵}) ∈ Cℋ |
| 14 | 13 | chshii 31163 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐵}) ∈ Sℋ |
| 15 | 12, 14 | eqeltri 2825 | . . . . . . . . . . . 12 ⊢ 𝐺 ∈ Sℋ |
| 16 | 11, 15 | shsleji 31306 | . . . . . . . . . . 11 ⊢ (𝐹 +ℋ 𝐺) ⊆ (𝐹 ∨ℋ 𝐺) |
| 17 | spansnid 31499 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴})) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ (span‘{𝐴}) |
| 19 | 18, 8 | eleqtrri 2828 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ 𝐹 |
| 20 | spansnid 31499 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵})) | |
| 21 | 2, 20 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ (span‘{𝐵}) |
| 22 | 21, 12 | eleqtrri 2828 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ 𝐺 |
| 23 | 11, 15 | shsvai 31300 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺)) |
| 24 | 19, 22, 23 | mp2an 692 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺) |
| 25 | 16, 24 | sselii 3946 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺) |
| 26 | elin 3933 | . . . . . . . . . 10 ⊢ ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ ((𝐴 +ℎ 𝐵) ∈ 𝐻 ∧ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺))) | |
| 27 | 7, 25, 26 | mpbir2an 711 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) |
| 28 | eleq2 2818 | . . . . . . . . 9 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ (𝐴 +ℎ 𝐵) ∈ 0ℋ)) | |
| 29 | 27, 28 | mpbii 233 | . . . . . . . 8 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ 0ℋ) |
| 30 | elch0 31190 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ 0ℋ ↔ (𝐴 +ℎ 𝐵) = 0ℎ) | |
| 31 | 29, 30 | sylib 218 | . . . . . . 7 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) = 0ℎ) |
| 32 | ch0 31164 | . . . . . . . 8 ⊢ ((span‘{𝐴}) ∈ Cℋ → 0ℎ ∈ (span‘{𝐴})) | |
| 33 | 9, 32 | ax-mp 5 | . . . . . . 7 ⊢ 0ℎ ∈ (span‘{𝐴}) |
| 34 | 31, 33 | eqeltrdi 2837 | . . . . . 6 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 35 | 8 | eleq2i 2821 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ (span‘{𝐴})) |
| 36 | sumspansn 31585 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | |
| 37 | 1, 2, 36 | mp2an 692 | . . . . . . 7 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})) |
| 38 | 35, 37 | bitr4i 278 | . . . . . 6 ⊢ (𝐵 ∈ 𝐹 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 39 | 34, 38 | sylibr 234 | . . . . 5 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → 𝐵 ∈ 𝐹) |
| 40 | 39 | con3i 154 | . . . 4 ⊢ (¬ 𝐵 ∈ 𝐹 → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 41 | 40 | adantl 481 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 42 | 6, 8 | ineq12i 4184 | . . . . . 6 ⊢ (𝐻 ∩ 𝐹) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) |
| 43 | 3, 1 | spansnm0i 31586 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 44 | 38, 43 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐵 ∈ 𝐹 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 45 | 42, 44 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐵 ∈ 𝐹 → (𝐻 ∩ 𝐹) = 0ℋ) |
| 46 | 6, 12 | ineq12i 4184 | . . . . . 6 ⊢ (𝐻 ∩ 𝐺) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) |
| 47 | sumspansn 31585 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))) | |
| 48 | 2, 1, 47 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})) |
| 49 | 1, 2 | hvcomi 30955 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 50 | 49 | eleq1i 2820 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 +ℎ 𝐴) ∈ (span‘{𝐵})) |
| 51 | 12 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐺 ↔ 𝐴 ∈ (span‘{𝐵})) |
| 52 | 48, 50, 51 | 3bitr4ri 304 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐺 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵})) |
| 53 | 3, 2 | spansnm0i 31586 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 54 | 52, 53 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 𝐺 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 55 | 46, 54 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐺 → (𝐻 ∩ 𝐺) = 0ℋ) |
| 56 | 45, 55 | oveqan12rd 7410 | . . . 4 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = (0ℋ ∨ℋ 0ℋ)) |
| 57 | h0elch 31191 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
| 58 | 57 | chj0i 31391 | . . . 4 ⊢ (0ℋ ∨ℋ 0ℋ) = 0ℋ |
| 59 | 56, 58 | eqtrdi 2781 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) |
| 60 | eqeq2 2742 | . . . . 5 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) | |
| 61 | 60 | notbid 318 | . . . 4 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → (¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) |
| 62 | 61 | biimparc 479 | . . 3 ⊢ ((¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ ∧ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 63 | 41, 59, 62 | syl2anc 584 | . 2 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 64 | ioran 985 | . 2 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) ↔ (¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹)) | |
| 65 | df-ne 2927 | . 2 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | |
| 66 | 63, 64, 65 | 3imtr4i 292 | 1 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 {csn 4592 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 +ℎ cva 30856 0ℎc0v 30860 Sℋ csh 30864 Cℋ cch 30865 +ℋ cph 30867 spancspn 30868 ∨ℋ chj 30869 0ℋc0h 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 ax-hcompl 31138 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-cn 23121 df-cnp 23122 df-lm 23123 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cfil 25162 df-cau 25163 df-cmet 25164 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-dip 30637 df-ssp 30658 df-ph 30749 df-cbn 30799 df-hnorm 30904 df-hba 30905 df-hvsub 30907 df-hlim 30908 df-hcau 30909 df-sh 31143 df-ch 31157 df-oc 31188 df-ch0 31189 df-shs 31244 df-span 31245 df-chj 31246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |