HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Structured version   Visualization version   GIF version

Theorem nonbooli 31683
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻𝐹) ∨ (𝐻𝐺)) = 0 but (𝐻 ∩ (𝐹 𝐺)) ≠ 0. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1 𝐴 ∈ ℋ
nonbool.2 𝐵 ∈ ℋ
nonbool.3 𝐹 = (span‘{𝐴})
nonbool.4 𝐺 = (span‘{𝐵})
nonbool.5 𝐻 = (span‘{(𝐴 + 𝐵)})
Assertion
Ref Expression
nonbooli (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13 𝐴 ∈ ℋ
2 nonbool.2 . . . . . . . . . . . . 13 𝐵 ∈ ℋ
31, 2hvaddcli 31050 . . . . . . . . . . . 12 (𝐴 + 𝐵) ∈ ℋ
4 spansnid 31595 . . . . . . . . . . . 12 ((𝐴 + 𝐵) ∈ ℋ → (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)}))
53, 4ax-mp 5 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)})
6 nonbool.5 . . . . . . . . . . 11 𝐻 = (span‘{(𝐴 + 𝐵)})
75, 6eleqtrri 2843 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ 𝐻
8 nonbool.3 . . . . . . . . . . . . 13 𝐹 = (span‘{𝐴})
91spansnchi 31594 . . . . . . . . . . . . . 14 (span‘{𝐴}) ∈ C
109chshii 31259 . . . . . . . . . . . . 13 (span‘{𝐴}) ∈ S
118, 10eqeltri 2840 . . . . . . . . . . . 12 𝐹S
12 nonbool.4 . . . . . . . . . . . . 13 𝐺 = (span‘{𝐵})
132spansnchi 31594 . . . . . . . . . . . . . 14 (span‘{𝐵}) ∈ C
1413chshii 31259 . . . . . . . . . . . . 13 (span‘{𝐵}) ∈ S
1512, 14eqeltri 2840 . . . . . . . . . . . 12 𝐺S
1611, 15shsleji 31402 . . . . . . . . . . 11 (𝐹 + 𝐺) ⊆ (𝐹 𝐺)
17 spansnid 31595 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
181, 17ax-mp 5 . . . . . . . . . . . . 13 𝐴 ∈ (span‘{𝐴})
1918, 8eleqtrri 2843 . . . . . . . . . . . 12 𝐴𝐹
20 spansnid 31595 . . . . . . . . . . . . . 14 (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵}))
212, 20ax-mp 5 . . . . . . . . . . . . 13 𝐵 ∈ (span‘{𝐵})
2221, 12eleqtrri 2843 . . . . . . . . . . . 12 𝐵𝐺
2311, 15shsvai 31396 . . . . . . . . . . . 12 ((𝐴𝐹𝐵𝐺) → (𝐴 + 𝐵) ∈ (𝐹 + 𝐺))
2419, 22, 23mp2an 691 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (𝐹 + 𝐺)
2516, 24sselii 4005 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ (𝐹 𝐺)
26 elin 3992 . . . . . . . . . 10 ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ ((𝐴 + 𝐵) ∈ 𝐻 ∧ (𝐴 + 𝐵) ∈ (𝐹 𝐺)))
277, 25, 26mpbir2an 710 . . . . . . . . 9 (𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺))
28 eleq2 2833 . . . . . . . . 9 ((𝐻 ∩ (𝐹 𝐺)) = 0 → ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ (𝐴 + 𝐵) ∈ 0))
2927, 28mpbii 233 . . . . . . . 8 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ 0)
30 elch0 31286 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 0 ↔ (𝐴 + 𝐵) = 0)
3129, 30sylib 218 . . . . . . 7 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) = 0)
32 ch0 31260 . . . . . . . 8 ((span‘{𝐴}) ∈ C → 0 ∈ (span‘{𝐴}))
339, 32ax-mp 5 . . . . . . 7 0 ∈ (span‘{𝐴})
3431, 33eqeltrdi 2852 . . . . . 6 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ (span‘{𝐴}))
358eleq2i 2836 . . . . . . 7 (𝐵𝐹𝐵 ∈ (span‘{𝐴}))
36 sumspansn 31681 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})))
371, 2, 36mp2an 691 . . . . . . 7 ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))
3835, 37bitr4i 278 . . . . . 6 (𝐵𝐹 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐴}))
3934, 38sylibr 234 . . . . 5 ((𝐻 ∩ (𝐹 𝐺)) = 0𝐵𝐹)
4039con3i 154 . . . 4 𝐵𝐹 → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
4140adantl 481 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
426, 8ineq12i 4239 . . . . . 6 (𝐻𝐹) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴}))
433, 1spansnm0i 31682 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4438, 43sylnbi 330 . . . . . 6 𝐵𝐹 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4542, 44eqtrid 2792 . . . . 5 𝐵𝐹 → (𝐻𝐹) = 0)
466, 12ineq12i 4239 . . . . . 6 (𝐻𝐺) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵}))
47 sumspansn 31681 . . . . . . . . 9 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})))
482, 1, 47mp2an 691 . . . . . . . 8 ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))
491, 2hvcomi 31051 . . . . . . . . 9 (𝐴 + 𝐵) = (𝐵 + 𝐴)
5049eleq1i 2835 . . . . . . . 8 ((𝐴 + 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 + 𝐴) ∈ (span‘{𝐵}))
5112eleq2i 2836 . . . . . . . 8 (𝐴𝐺𝐴 ∈ (span‘{𝐵}))
5248, 50, 513bitr4ri 304 . . . . . . 7 (𝐴𝐺 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐵}))
533, 2spansnm0i 31682 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5452, 53sylnbi 330 . . . . . 6 𝐴𝐺 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5546, 54eqtrid 2792 . . . . 5 𝐴𝐺 → (𝐻𝐺) = 0)
5645, 55oveqan12rd 7468 . . . 4 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = (0 0))
57 h0elch 31287 . . . . 5 0C
5857chj0i 31487 . . . 4 (0 0) = 0
5956, 58eqtrdi 2796 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = 0)
60 eqeq2 2752 . . . . 5 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → ((𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ (𝐻 ∩ (𝐹 𝐺)) = 0))
6160notbid 318 . . . 4 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → (¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = 0))
6261biimparc 479 . . 3 ((¬ (𝐻 ∩ (𝐹 𝐺)) = 0 ∧ ((𝐻𝐹) ∨ (𝐻𝐺)) = 0) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6341, 59, 62syl2anc 583 . 2 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
64 ioran 984 . 2 (¬ (𝐴𝐺𝐵𝐹) ↔ (¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹))
65 df-ne 2947 . 2 ((𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6663, 64, 653imtr4i 292 1 (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cin 3975  {csn 4648  cfv 6573  (class class class)co 7448  chba 30951   + cva 30952  0c0v 30956   S csh 30960   C cch 30961   + cph 30963  spancspn 30964   chj 30965  0c0h 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-span 31341  df-chj 31342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator