HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Structured version   Visualization version   GIF version

Theorem nonbooli 31632
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻𝐹) ∨ (𝐻𝐺)) = 0 but (𝐻 ∩ (𝐹 𝐺)) ≠ 0. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1 𝐴 ∈ ℋ
nonbool.2 𝐵 ∈ ℋ
nonbool.3 𝐹 = (span‘{𝐴})
nonbool.4 𝐺 = (span‘{𝐵})
nonbool.5 𝐻 = (span‘{(𝐴 + 𝐵)})
Assertion
Ref Expression
nonbooli (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13 𝐴 ∈ ℋ
2 nonbool.2 . . . . . . . . . . . . 13 𝐵 ∈ ℋ
31, 2hvaddcli 30999 . . . . . . . . . . . 12 (𝐴 + 𝐵) ∈ ℋ
4 spansnid 31544 . . . . . . . . . . . 12 ((𝐴 + 𝐵) ∈ ℋ → (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)}))
53, 4ax-mp 5 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)})
6 nonbool.5 . . . . . . . . . . 11 𝐻 = (span‘{(𝐴 + 𝐵)})
75, 6eleqtrri 2833 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ 𝐻
8 nonbool.3 . . . . . . . . . . . . 13 𝐹 = (span‘{𝐴})
91spansnchi 31543 . . . . . . . . . . . . . 14 (span‘{𝐴}) ∈ C
109chshii 31208 . . . . . . . . . . . . 13 (span‘{𝐴}) ∈ S
118, 10eqeltri 2830 . . . . . . . . . . . 12 𝐹S
12 nonbool.4 . . . . . . . . . . . . 13 𝐺 = (span‘{𝐵})
132spansnchi 31543 . . . . . . . . . . . . . 14 (span‘{𝐵}) ∈ C
1413chshii 31208 . . . . . . . . . . . . 13 (span‘{𝐵}) ∈ S
1512, 14eqeltri 2830 . . . . . . . . . . . 12 𝐺S
1611, 15shsleji 31351 . . . . . . . . . . 11 (𝐹 + 𝐺) ⊆ (𝐹 𝐺)
17 spansnid 31544 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
181, 17ax-mp 5 . . . . . . . . . . . . 13 𝐴 ∈ (span‘{𝐴})
1918, 8eleqtrri 2833 . . . . . . . . . . . 12 𝐴𝐹
20 spansnid 31544 . . . . . . . . . . . . . 14 (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵}))
212, 20ax-mp 5 . . . . . . . . . . . . 13 𝐵 ∈ (span‘{𝐵})
2221, 12eleqtrri 2833 . . . . . . . . . . . 12 𝐵𝐺
2311, 15shsvai 31345 . . . . . . . . . . . 12 ((𝐴𝐹𝐵𝐺) → (𝐴 + 𝐵) ∈ (𝐹 + 𝐺))
2419, 22, 23mp2an 692 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (𝐹 + 𝐺)
2516, 24sselii 3955 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ (𝐹 𝐺)
26 elin 3942 . . . . . . . . . 10 ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ ((𝐴 + 𝐵) ∈ 𝐻 ∧ (𝐴 + 𝐵) ∈ (𝐹 𝐺)))
277, 25, 26mpbir2an 711 . . . . . . . . 9 (𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺))
28 eleq2 2823 . . . . . . . . 9 ((𝐻 ∩ (𝐹 𝐺)) = 0 → ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ (𝐴 + 𝐵) ∈ 0))
2927, 28mpbii 233 . . . . . . . 8 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ 0)
30 elch0 31235 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 0 ↔ (𝐴 + 𝐵) = 0)
3129, 30sylib 218 . . . . . . 7 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) = 0)
32 ch0 31209 . . . . . . . 8 ((span‘{𝐴}) ∈ C → 0 ∈ (span‘{𝐴}))
339, 32ax-mp 5 . . . . . . 7 0 ∈ (span‘{𝐴})
3431, 33eqeltrdi 2842 . . . . . 6 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ (span‘{𝐴}))
358eleq2i 2826 . . . . . . 7 (𝐵𝐹𝐵 ∈ (span‘{𝐴}))
36 sumspansn 31630 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})))
371, 2, 36mp2an 692 . . . . . . 7 ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))
3835, 37bitr4i 278 . . . . . 6 (𝐵𝐹 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐴}))
3934, 38sylibr 234 . . . . 5 ((𝐻 ∩ (𝐹 𝐺)) = 0𝐵𝐹)
4039con3i 154 . . . 4 𝐵𝐹 → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
4140adantl 481 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
426, 8ineq12i 4193 . . . . . 6 (𝐻𝐹) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴}))
433, 1spansnm0i 31631 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4438, 43sylnbi 330 . . . . . 6 𝐵𝐹 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4542, 44eqtrid 2782 . . . . 5 𝐵𝐹 → (𝐻𝐹) = 0)
466, 12ineq12i 4193 . . . . . 6 (𝐻𝐺) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵}))
47 sumspansn 31630 . . . . . . . . 9 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})))
482, 1, 47mp2an 692 . . . . . . . 8 ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))
491, 2hvcomi 31000 . . . . . . . . 9 (𝐴 + 𝐵) = (𝐵 + 𝐴)
5049eleq1i 2825 . . . . . . . 8 ((𝐴 + 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 + 𝐴) ∈ (span‘{𝐵}))
5112eleq2i 2826 . . . . . . . 8 (𝐴𝐺𝐴 ∈ (span‘{𝐵}))
5248, 50, 513bitr4ri 304 . . . . . . 7 (𝐴𝐺 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐵}))
533, 2spansnm0i 31631 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5452, 53sylnbi 330 . . . . . 6 𝐴𝐺 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5546, 54eqtrid 2782 . . . . 5 𝐴𝐺 → (𝐻𝐺) = 0)
5645, 55oveqan12rd 7425 . . . 4 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = (0 0))
57 h0elch 31236 . . . . 5 0C
5857chj0i 31436 . . . 4 (0 0) = 0
5956, 58eqtrdi 2786 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = 0)
60 eqeq2 2747 . . . . 5 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → ((𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ (𝐻 ∩ (𝐹 𝐺)) = 0))
6160notbid 318 . . . 4 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → (¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = 0))
6261biimparc 479 . . 3 ((¬ (𝐻 ∩ (𝐹 𝐺)) = 0 ∧ ((𝐻𝐹) ∨ (𝐻𝐺)) = 0) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6341, 59, 62syl2anc 584 . 2 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
64 ioran 985 . 2 (¬ (𝐴𝐺𝐵𝐹) ↔ (¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹))
65 df-ne 2933 . 2 ((𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6663, 64, 653imtr4i 292 1 (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  cin 3925  {csn 4601  cfv 6531  (class class class)co 7405  chba 30900   + cva 30901  0c0v 30905   S csh 30909   C cch 30910   + cph 30912  spancspn 30913   chj 30914  0c0h 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066  ax-hcompl 31183
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-lm 23167  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cfil 25207  df-cau 25208  df-cmet 25209  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ims 30582  df-dip 30682  df-ssp 30703  df-ph 30794  df-cbn 30844  df-hnorm 30949  df-hba 30950  df-hvsub 30952  df-hlim 30953  df-hcau 30954  df-sh 31188  df-ch 31202  df-oc 31233  df-ch0 31234  df-shs 31289  df-span 31290  df-chj 31291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator