| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nonbooli | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nonbool.1 | ⊢ 𝐴 ∈ ℋ |
| nonbool.2 | ⊢ 𝐵 ∈ ℋ |
| nonbool.3 | ⊢ 𝐹 = (span‘{𝐴}) |
| nonbool.4 | ⊢ 𝐺 = (span‘{𝐵}) |
| nonbool.5 | ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) |
| Ref | Expression |
|---|---|
| nonbooli | ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonbool.1 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ ℋ | |
| 2 | nonbool.2 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvaddcli 30993 | . . . . . . . . . . . 12 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 4 | spansnid 31538 | . . . . . . . . . . . 12 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)})) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)}) |
| 6 | nonbool.5 | . . . . . . . . . . 11 ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) | |
| 7 | 5, 6 | eleqtrri 2830 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ 𝐻 |
| 8 | nonbool.3 | . . . . . . . . . . . . 13 ⊢ 𝐹 = (span‘{𝐴}) | |
| 9 | 1 | spansnchi 31537 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐴}) ∈ Cℋ |
| 10 | 9 | chshii 31202 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐴}) ∈ Sℋ |
| 11 | 8, 10 | eqeltri 2827 | . . . . . . . . . . . 12 ⊢ 𝐹 ∈ Sℋ |
| 12 | nonbool.4 | . . . . . . . . . . . . 13 ⊢ 𝐺 = (span‘{𝐵}) | |
| 13 | 2 | spansnchi 31537 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐵}) ∈ Cℋ |
| 14 | 13 | chshii 31202 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐵}) ∈ Sℋ |
| 15 | 12, 14 | eqeltri 2827 | . . . . . . . . . . . 12 ⊢ 𝐺 ∈ Sℋ |
| 16 | 11, 15 | shsleji 31345 | . . . . . . . . . . 11 ⊢ (𝐹 +ℋ 𝐺) ⊆ (𝐹 ∨ℋ 𝐺) |
| 17 | spansnid 31538 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴})) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ (span‘{𝐴}) |
| 19 | 18, 8 | eleqtrri 2830 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ 𝐹 |
| 20 | spansnid 31538 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵})) | |
| 21 | 2, 20 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ (span‘{𝐵}) |
| 22 | 21, 12 | eleqtrri 2830 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ 𝐺 |
| 23 | 11, 15 | shsvai 31339 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺)) |
| 24 | 19, 22, 23 | mp2an 692 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺) |
| 25 | 16, 24 | sselii 3931 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺) |
| 26 | elin 3918 | . . . . . . . . . 10 ⊢ ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ ((𝐴 +ℎ 𝐵) ∈ 𝐻 ∧ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺))) | |
| 27 | 7, 25, 26 | mpbir2an 711 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) |
| 28 | eleq2 2820 | . . . . . . . . 9 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ (𝐴 +ℎ 𝐵) ∈ 0ℋ)) | |
| 29 | 27, 28 | mpbii 233 | . . . . . . . 8 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ 0ℋ) |
| 30 | elch0 31229 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ 0ℋ ↔ (𝐴 +ℎ 𝐵) = 0ℎ) | |
| 31 | 29, 30 | sylib 218 | . . . . . . 7 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) = 0ℎ) |
| 32 | ch0 31203 | . . . . . . . 8 ⊢ ((span‘{𝐴}) ∈ Cℋ → 0ℎ ∈ (span‘{𝐴})) | |
| 33 | 9, 32 | ax-mp 5 | . . . . . . 7 ⊢ 0ℎ ∈ (span‘{𝐴}) |
| 34 | 31, 33 | eqeltrdi 2839 | . . . . . 6 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 35 | 8 | eleq2i 2823 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ (span‘{𝐴})) |
| 36 | sumspansn 31624 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | |
| 37 | 1, 2, 36 | mp2an 692 | . . . . . . 7 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})) |
| 38 | 35, 37 | bitr4i 278 | . . . . . 6 ⊢ (𝐵 ∈ 𝐹 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
| 39 | 34, 38 | sylibr 234 | . . . . 5 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → 𝐵 ∈ 𝐹) |
| 40 | 39 | con3i 154 | . . . 4 ⊢ (¬ 𝐵 ∈ 𝐹 → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 41 | 40 | adantl 481 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
| 42 | 6, 8 | ineq12i 4168 | . . . . . 6 ⊢ (𝐻 ∩ 𝐹) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) |
| 43 | 3, 1 | spansnm0i 31625 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 44 | 38, 43 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐵 ∈ 𝐹 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
| 45 | 42, 44 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐵 ∈ 𝐹 → (𝐻 ∩ 𝐹) = 0ℋ) |
| 46 | 6, 12 | ineq12i 4168 | . . . . . 6 ⊢ (𝐻 ∩ 𝐺) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) |
| 47 | sumspansn 31624 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))) | |
| 48 | 2, 1, 47 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})) |
| 49 | 1, 2 | hvcomi 30994 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 50 | 49 | eleq1i 2822 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 +ℎ 𝐴) ∈ (span‘{𝐵})) |
| 51 | 12 | eleq2i 2823 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐺 ↔ 𝐴 ∈ (span‘{𝐵})) |
| 52 | 48, 50, 51 | 3bitr4ri 304 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐺 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵})) |
| 53 | 3, 2 | spansnm0i 31625 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 54 | 52, 53 | sylnbi 330 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 𝐺 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
| 55 | 46, 54 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐺 → (𝐻 ∩ 𝐺) = 0ℋ) |
| 56 | 45, 55 | oveqan12rd 7366 | . . . 4 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = (0ℋ ∨ℋ 0ℋ)) |
| 57 | h0elch 31230 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
| 58 | 57 | chj0i 31430 | . . . 4 ⊢ (0ℋ ∨ℋ 0ℋ) = 0ℋ |
| 59 | 56, 58 | eqtrdi 2782 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) |
| 60 | eqeq2 2743 | . . . . 5 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) | |
| 61 | 60 | notbid 318 | . . . 4 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → (¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) |
| 62 | 61 | biimparc 479 | . . 3 ⊢ ((¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ ∧ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 63 | 41, 59, 62 | syl2anc 584 | . 2 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| 64 | ioran 985 | . 2 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) ↔ (¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹)) | |
| 65 | df-ne 2929 | . 2 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | |
| 66 | 63, 64, 65 | 3imtr4i 292 | 1 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3901 {csn 4576 ‘cfv 6481 (class class class)co 7346 ℋchba 30894 +ℎ cva 30895 0ℎc0v 30899 Sℋ csh 30903 Cℋ cch 30904 +ℋ cph 30906 spancspn 30907 ∨ℋ chj 30908 0ℋc0h 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 ax-hilex 30974 ax-hfvadd 30975 ax-hvcom 30976 ax-hvass 30977 ax-hv0cl 30978 ax-hvaddid 30979 ax-hfvmul 30980 ax-hvmulid 30981 ax-hvmulass 30982 ax-hvdistr1 30983 ax-hvdistr2 30984 ax-hvmul0 30985 ax-hfi 31054 ax-his1 31057 ax-his2 31058 ax-his3 31059 ax-his4 31060 ax-hcompl 31177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-cn 23140 df-cnp 23141 df-lm 23142 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cfil 25180 df-cau 25181 df-cmet 25182 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 df-ims 30576 df-dip 30676 df-ssp 30697 df-ph 30788 df-cbn 30838 df-hnorm 30943 df-hba 30944 df-hvsub 30946 df-hlim 30947 df-hcau 30948 df-sh 31182 df-ch 31196 df-oc 31227 df-ch0 31228 df-shs 31283 df-span 31284 df-chj 31285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |