HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Structured version   Visualization version   GIF version

Theorem normpar2i 30098
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1 𝐴 ∈ ℋ
normpar2.2 𝐵 ∈ ℋ
normpar2.3 𝐶 ∈ ℋ
Assertion
Ref Expression
normpar2i ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))

Proof of Theorem normpar2i
StepHypRef Expression
1 normpar2.1 . . . . . . 7 𝐴 ∈ ℋ
2 normpar2.2 . . . . . . 7 𝐵 ∈ ℋ
31, 2hvaddcli 29960 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
4 2cn 12228 . . . . . . 7 2 ∈ ℂ
5 normpar2.3 . . . . . . 7 𝐶 ∈ ℋ
64, 5hvmulcli 29956 . . . . . 6 (2 · 𝐶) ∈ ℋ
73, 6hvsubcli 29963 . . . . 5 ((𝐴 + 𝐵) − (2 · 𝐶)) ∈ ℋ
87normcli 30073 . . . 4 (norm‘((𝐴 + 𝐵) − (2 · 𝐶))) ∈ ℝ
98resqcli 14090 . . 3 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℝ
109recni 11169 . 2 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℂ
111, 2hvsubcli 29963 . . . . 5 (𝐴 𝐵) ∈ ℋ
1211normcli 30073 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
1312resqcli 14090 . . 3 ((norm‘(𝐴 𝐵))↑2) ∈ ℝ
1413recni 11169 . 2 ((norm‘(𝐴 𝐵))↑2) ∈ ℂ
15 4cn 12238 . . . . 5 4 ∈ ℂ
161, 5hvsubcli 29963 . . . . . . . 8 (𝐴 𝐶) ∈ ℋ
1716normcli 30073 . . . . . . 7 (norm‘(𝐴 𝐶)) ∈ ℝ
1817resqcli 14090 . . . . . 6 ((norm‘(𝐴 𝐶))↑2) ∈ ℝ
1918recni 11169 . . . . 5 ((norm‘(𝐴 𝐶))↑2) ∈ ℂ
2015, 19mulcli 11162 . . . 4 (4 · ((norm‘(𝐴 𝐶))↑2)) ∈ ℂ
212, 5hvsubcli 29963 . . . . . . . 8 (𝐵 𝐶) ∈ ℋ
2221normcli 30073 . . . . . . 7 (norm‘(𝐵 𝐶)) ∈ ℝ
2322resqcli 14090 . . . . . 6 ((norm‘(𝐵 𝐶))↑2) ∈ ℝ
2423recni 11169 . . . . 5 ((norm‘(𝐵 𝐶))↑2) ∈ ℂ
2515, 24mulcli 11162 . . . 4 (4 · ((norm‘(𝐵 𝐶))↑2)) ∈ ℂ
26 2ne0 12257 . . . 4 2 ≠ 0
2720, 25, 4, 26divdiri 11912 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2))
2820, 25addcomi 11346 . . . . . . 7 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
29 neg1cn 12267 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
3029, 6hvmulcli 29956 . . . . . . . . . . . . . . 15 (-1 · (2 · 𝐶)) ∈ ℋ
3129, 11hvmulcli 29956 . . . . . . . . . . . . . . 15 (-1 · (𝐴 𝐵)) ∈ ℋ
323, 30, 31hvadd32i 29996 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
333, 6hvsubvali 29962 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) − (2 · 𝐶)) = ((𝐴 + 𝐵) + (-1 · (2 · 𝐶)))
3433oveq1i 7367 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵)))
354, 2hvmulcli 29956 . . . . . . . . . . . . . . . 16 (2 · 𝐵) ∈ ℋ
3635, 6hvsubvali 29962 . . . . . . . . . . . . . . 15 ((2 · 𝐵) − (2 · 𝐶)) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
371, 2hvcomi 29961 . . . . . . . . . . . . . . . . . 18 (𝐴 + 𝐵) = (𝐵 + 𝐴)
381, 2hvnegdii 30004 . . . . . . . . . . . . . . . . . 18 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
3937, 38oveq12i 7369 . . . . . . . . . . . . . . . . 17 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = ((𝐵 + 𝐴) + (𝐵 𝐴))
402, 1hvsubcan2i 30006 . . . . . . . . . . . . . . . . 17 ((𝐵 + 𝐴) + (𝐵 𝐴)) = (2 · 𝐵)
4139, 40eqtri 2764 . . . . . . . . . . . . . . . 16 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = (2 · 𝐵)
4241oveq1i 7367 . . . . . . . . . . . . . . 15 (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶))) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
4336, 42eqtr4i 2767 . . . . . . . . . . . . . 14 ((2 · 𝐵) − (2 · 𝐶)) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
4432, 34, 433eqtr4i 2774 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = ((2 · 𝐵) − (2 · 𝐶))
457, 11hvsubvali 29962 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵)))
464, 2, 5hvsubdistr1i 29994 . . . . . . . . . . . . 13 (2 · (𝐵 𝐶)) = ((2 · 𝐵) − (2 · 𝐶))
4744, 45, 463eqtr4i 2774 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (2 · (𝐵 𝐶))
4847fveq2i 6845 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (norm‘(2 · (𝐵 𝐶)))
494, 21norm-iii-i 30081 . . . . . . . . . . 11 (norm‘(2 · (𝐵 𝐶))) = ((abs‘2) · (norm‘(𝐵 𝐶)))
50 0le2 12255 . . . . . . . . . . . . 13 0 ≤ 2
51 2re 12227 . . . . . . . . . . . . . 14 2 ∈ ℝ
5251absidi 15262 . . . . . . . . . . . . 13 (0 ≤ 2 → (abs‘2) = 2)
5350, 52ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
5453oveq1i 7367 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐵 𝐶))) = (2 · (norm‘(𝐵 𝐶)))
5548, 49, 543eqtri 2768 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (2 · (norm‘(𝐵 𝐶)))
5655oveq1i 7367 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐵 𝐶)))↑2)
5722recni 11169 . . . . . . . . . 10 (norm‘(𝐵 𝐶)) ∈ ℂ
584, 57sqmuli 14088 . . . . . . . . 9 ((2 · (norm‘(𝐵 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐵 𝐶))↑2))
59 sq2 14101 . . . . . . . . . 10 (2↑2) = 4
6059oveq1i 7367 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐵 𝐶))↑2)) = (4 · ((norm‘(𝐵 𝐶))↑2))
6156, 58, 603eqtri 2768 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐵 𝐶))↑2))
621, 2hvsubcan2i 30006 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
6362oveq1i 7367 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶))) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
643, 30, 11hvadd32i 29996 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶)))
654, 1hvmulcli 29956 . . . . . . . . . . . . . . 15 (2 · 𝐴) ∈ ℋ
6665, 6hvsubvali 29962 . . . . . . . . . . . . . 14 ((2 · 𝐴) − (2 · 𝐶)) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
6763, 64, 663eqtr4i 2774 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = ((2 · 𝐴) − (2 · 𝐶))
6833oveq1i 7367 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵))
694, 1, 5hvsubdistr1i 29994 . . . . . . . . . . . . 13 (2 · (𝐴 𝐶)) = ((2 · 𝐴) − (2 · 𝐶))
7067, 68, 693eqtr4i 2774 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (2 · (𝐴 𝐶))
7170fveq2i 6845 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (norm‘(2 · (𝐴 𝐶)))
724, 16norm-iii-i 30081 . . . . . . . . . . 11 (norm‘(2 · (𝐴 𝐶))) = ((abs‘2) · (norm‘(𝐴 𝐶)))
7353oveq1i 7367 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐴 𝐶))) = (2 · (norm‘(𝐴 𝐶)))
7471, 72, 733eqtri 2768 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (2 · (norm‘(𝐴 𝐶)))
7574oveq1i 7367 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐴 𝐶)))↑2)
7617recni 11169 . . . . . . . . . 10 (norm‘(𝐴 𝐶)) ∈ ℂ
774, 76sqmuli 14088 . . . . . . . . 9 ((2 · (norm‘(𝐴 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐴 𝐶))↑2))
7859oveq1i 7367 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐴 𝐶))↑2)) = (4 · ((norm‘(𝐴 𝐶))↑2))
7975, 77, 783eqtri 2768 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐴 𝐶))↑2))
8061, 79oveq12i 7369 . . . . . . 7 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
8128, 80eqtr4i 2767 . . . . . 6 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2))
827, 11normpari 30096 . . . . . 6 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8381, 82eqtri 2764 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8483oveq1i 7367 . . . 4 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2)
854, 10mulcli 11162 . . . . 5 (2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) ∈ ℂ
864, 14mulcli 11162 . . . . 5 (2 · ((norm‘(𝐴 𝐵))↑2)) ∈ ℂ
8785, 86, 4, 26divdiri 11912 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2))
8810, 4, 26divcan3i 11901 . . . . 5 ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) = ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)
8914, 4, 26divcan3i 11901 . . . . 5 ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2) = ((norm‘(𝐴 𝐵))↑2)
9088, 89oveq12i 7369 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2)) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9184, 87, 903eqtri 2768 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9215, 19, 4, 26div23i 11913 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐴 𝐶))↑2))
93 4d2e2 12323 . . . . . 6 (4 / 2) = 2
9493oveq1i 7367 . . . . 5 ((4 / 2) · ((norm‘(𝐴 𝐶))↑2)) = (2 · ((norm‘(𝐴 𝐶))↑2))
9592, 94eqtri 2764 . . . 4 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐴 𝐶))↑2))
9615, 24, 4, 26div23i 11913 . . . . 5 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐵 𝐶))↑2))
9793oveq1i 7367 . . . . 5 ((4 / 2) · ((norm‘(𝐵 𝐶))↑2)) = (2 · ((norm‘(𝐵 𝐶))↑2))
9896, 97eqtri 2764 . . . 4 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐵 𝐶))↑2))
9995, 98oveq12i 7369 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10027, 91, 993eqtr3i 2772 . 2 (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10110, 14, 100mvlladdi 11419 1 ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  4c4 12210  cexp 13967  abscabs 15119  chba 29861   + cva 29862   · csm 29863  normcno 29865   cmv 29867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-hnorm 29910  df-hvsub 29913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator