HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Structured version   Visualization version   GIF version

Theorem normpar2i 31058
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1 𝐴 ∈ ℋ
normpar2.2 𝐵 ∈ ℋ
normpar2.3 𝐶 ∈ ℋ
Assertion
Ref Expression
normpar2i ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))

Proof of Theorem normpar2i
StepHypRef Expression
1 normpar2.1 . . . . . . 7 𝐴 ∈ ℋ
2 normpar2.2 . . . . . . 7 𝐵 ∈ ℋ
31, 2hvaddcli 30920 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
4 2cn 12237 . . . . . . 7 2 ∈ ℂ
5 normpar2.3 . . . . . . 7 𝐶 ∈ ℋ
64, 5hvmulcli 30916 . . . . . 6 (2 · 𝐶) ∈ ℋ
73, 6hvsubcli 30923 . . . . 5 ((𝐴 + 𝐵) − (2 · 𝐶)) ∈ ℋ
87normcli 31033 . . . 4 (norm‘((𝐴 + 𝐵) − (2 · 𝐶))) ∈ ℝ
98resqcli 14127 . . 3 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℝ
109recni 11164 . 2 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℂ
111, 2hvsubcli 30923 . . . . 5 (𝐴 𝐵) ∈ ℋ
1211normcli 31033 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
1312resqcli 14127 . . 3 ((norm‘(𝐴 𝐵))↑2) ∈ ℝ
1413recni 11164 . 2 ((norm‘(𝐴 𝐵))↑2) ∈ ℂ
15 4cn 12247 . . . . 5 4 ∈ ℂ
161, 5hvsubcli 30923 . . . . . . . 8 (𝐴 𝐶) ∈ ℋ
1716normcli 31033 . . . . . . 7 (norm‘(𝐴 𝐶)) ∈ ℝ
1817resqcli 14127 . . . . . 6 ((norm‘(𝐴 𝐶))↑2) ∈ ℝ
1918recni 11164 . . . . 5 ((norm‘(𝐴 𝐶))↑2) ∈ ℂ
2015, 19mulcli 11157 . . . 4 (4 · ((norm‘(𝐴 𝐶))↑2)) ∈ ℂ
212, 5hvsubcli 30923 . . . . . . . 8 (𝐵 𝐶) ∈ ℋ
2221normcli 31033 . . . . . . 7 (norm‘(𝐵 𝐶)) ∈ ℝ
2322resqcli 14127 . . . . . 6 ((norm‘(𝐵 𝐶))↑2) ∈ ℝ
2423recni 11164 . . . . 5 ((norm‘(𝐵 𝐶))↑2) ∈ ℂ
2515, 24mulcli 11157 . . . 4 (4 · ((norm‘(𝐵 𝐶))↑2)) ∈ ℂ
26 2ne0 12266 . . . 4 2 ≠ 0
2720, 25, 4, 26divdiri 11915 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2))
2820, 25addcomi 11341 . . . . . . 7 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
29 neg1cn 12147 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
3029, 6hvmulcli 30916 . . . . . . . . . . . . . . 15 (-1 · (2 · 𝐶)) ∈ ℋ
3129, 11hvmulcli 30916 . . . . . . . . . . . . . . 15 (-1 · (𝐴 𝐵)) ∈ ℋ
323, 30, 31hvadd32i 30956 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
333, 6hvsubvali 30922 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) − (2 · 𝐶)) = ((𝐴 + 𝐵) + (-1 · (2 · 𝐶)))
3433oveq1i 7379 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵)))
354, 2hvmulcli 30916 . . . . . . . . . . . . . . . 16 (2 · 𝐵) ∈ ℋ
3635, 6hvsubvali 30922 . . . . . . . . . . . . . . 15 ((2 · 𝐵) − (2 · 𝐶)) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
371, 2hvcomi 30921 . . . . . . . . . . . . . . . . . 18 (𝐴 + 𝐵) = (𝐵 + 𝐴)
381, 2hvnegdii 30964 . . . . . . . . . . . . . . . . . 18 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
3937, 38oveq12i 7381 . . . . . . . . . . . . . . . . 17 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = ((𝐵 + 𝐴) + (𝐵 𝐴))
402, 1hvsubcan2i 30966 . . . . . . . . . . . . . . . . 17 ((𝐵 + 𝐴) + (𝐵 𝐴)) = (2 · 𝐵)
4139, 40eqtri 2752 . . . . . . . . . . . . . . . 16 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = (2 · 𝐵)
4241oveq1i 7379 . . . . . . . . . . . . . . 15 (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶))) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
4336, 42eqtr4i 2755 . . . . . . . . . . . . . 14 ((2 · 𝐵) − (2 · 𝐶)) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
4432, 34, 433eqtr4i 2762 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = ((2 · 𝐵) − (2 · 𝐶))
457, 11hvsubvali 30922 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵)))
464, 2, 5hvsubdistr1i 30954 . . . . . . . . . . . . 13 (2 · (𝐵 𝐶)) = ((2 · 𝐵) − (2 · 𝐶))
4744, 45, 463eqtr4i 2762 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (2 · (𝐵 𝐶))
4847fveq2i 6843 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (norm‘(2 · (𝐵 𝐶)))
494, 21norm-iii-i 31041 . . . . . . . . . . 11 (norm‘(2 · (𝐵 𝐶))) = ((abs‘2) · (norm‘(𝐵 𝐶)))
50 0le2 12264 . . . . . . . . . . . . 13 0 ≤ 2
51 2re 12236 . . . . . . . . . . . . . 14 2 ∈ ℝ
5251absidi 15320 . . . . . . . . . . . . 13 (0 ≤ 2 → (abs‘2) = 2)
5350, 52ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
5453oveq1i 7379 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐵 𝐶))) = (2 · (norm‘(𝐵 𝐶)))
5548, 49, 543eqtri 2756 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (2 · (norm‘(𝐵 𝐶)))
5655oveq1i 7379 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐵 𝐶)))↑2)
5722recni 11164 . . . . . . . . . 10 (norm‘(𝐵 𝐶)) ∈ ℂ
584, 57sqmuli 14125 . . . . . . . . 9 ((2 · (norm‘(𝐵 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐵 𝐶))↑2))
59 sq2 14138 . . . . . . . . . 10 (2↑2) = 4
6059oveq1i 7379 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐵 𝐶))↑2)) = (4 · ((norm‘(𝐵 𝐶))↑2))
6156, 58, 603eqtri 2756 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐵 𝐶))↑2))
621, 2hvsubcan2i 30966 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
6362oveq1i 7379 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶))) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
643, 30, 11hvadd32i 30956 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶)))
654, 1hvmulcli 30916 . . . . . . . . . . . . . . 15 (2 · 𝐴) ∈ ℋ
6665, 6hvsubvali 30922 . . . . . . . . . . . . . 14 ((2 · 𝐴) − (2 · 𝐶)) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
6763, 64, 663eqtr4i 2762 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = ((2 · 𝐴) − (2 · 𝐶))
6833oveq1i 7379 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵))
694, 1, 5hvsubdistr1i 30954 . . . . . . . . . . . . 13 (2 · (𝐴 𝐶)) = ((2 · 𝐴) − (2 · 𝐶))
7067, 68, 693eqtr4i 2762 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (2 · (𝐴 𝐶))
7170fveq2i 6843 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (norm‘(2 · (𝐴 𝐶)))
724, 16norm-iii-i 31041 . . . . . . . . . . 11 (norm‘(2 · (𝐴 𝐶))) = ((abs‘2) · (norm‘(𝐴 𝐶)))
7353oveq1i 7379 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐴 𝐶))) = (2 · (norm‘(𝐴 𝐶)))
7471, 72, 733eqtri 2756 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (2 · (norm‘(𝐴 𝐶)))
7574oveq1i 7379 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐴 𝐶)))↑2)
7617recni 11164 . . . . . . . . . 10 (norm‘(𝐴 𝐶)) ∈ ℂ
774, 76sqmuli 14125 . . . . . . . . 9 ((2 · (norm‘(𝐴 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐴 𝐶))↑2))
7859oveq1i 7379 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐴 𝐶))↑2)) = (4 · ((norm‘(𝐴 𝐶))↑2))
7975, 77, 783eqtri 2756 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐴 𝐶))↑2))
8061, 79oveq12i 7381 . . . . . . 7 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
8128, 80eqtr4i 2755 . . . . . 6 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2))
827, 11normpari 31056 . . . . . 6 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8381, 82eqtri 2752 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8483oveq1i 7379 . . . 4 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2)
854, 10mulcli 11157 . . . . 5 (2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) ∈ ℂ
864, 14mulcli 11157 . . . . 5 (2 · ((norm‘(𝐴 𝐵))↑2)) ∈ ℂ
8785, 86, 4, 26divdiri 11915 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2))
8810, 4, 26divcan3i 11904 . . . . 5 ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) = ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)
8914, 4, 26divcan3i 11904 . . . . 5 ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2) = ((norm‘(𝐴 𝐵))↑2)
9088, 89oveq12i 7381 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2)) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9184, 87, 903eqtri 2756 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9215, 19, 4, 26div23i 11916 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐴 𝐶))↑2))
93 4d2e2 12327 . . . . . 6 (4 / 2) = 2
9493oveq1i 7379 . . . . 5 ((4 / 2) · ((norm‘(𝐴 𝐶))↑2)) = (2 · ((norm‘(𝐴 𝐶))↑2))
9592, 94eqtri 2752 . . . 4 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐴 𝐶))↑2))
9615, 24, 4, 26div23i 11916 . . . . 5 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐵 𝐶))↑2))
9793oveq1i 7379 . . . . 5 ((4 / 2) · ((norm‘(𝐵 𝐶))↑2)) = (2 · ((norm‘(𝐵 𝐶))↑2))
9896, 97eqtri 2752 . . . 4 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐵 𝐶))↑2))
9995, 98oveq12i 7381 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10027, 91, 993eqtr3i 2760 . 2 (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10110, 14, 100mvlladdi 11416 1 ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  4c4 12219  cexp 14002  abscabs 15176  chba 30821   + cva 30822   · csm 30823  normcno 30825   cmv 30827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-hnorm 30870  df-hvsub 30873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator