HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Structured version   Visualization version   GIF version

Theorem normpar2i 29518
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1 𝐴 ∈ ℋ
normpar2.2 𝐵 ∈ ℋ
normpar2.3 𝐶 ∈ ℋ
Assertion
Ref Expression
normpar2i ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))

Proof of Theorem normpar2i
StepHypRef Expression
1 normpar2.1 . . . . . . 7 𝐴 ∈ ℋ
2 normpar2.2 . . . . . . 7 𝐵 ∈ ℋ
31, 2hvaddcli 29380 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
4 2cn 12048 . . . . . . 7 2 ∈ ℂ
5 normpar2.3 . . . . . . 7 𝐶 ∈ ℋ
64, 5hvmulcli 29376 . . . . . 6 (2 · 𝐶) ∈ ℋ
73, 6hvsubcli 29383 . . . . 5 ((𝐴 + 𝐵) − (2 · 𝐶)) ∈ ℋ
87normcli 29493 . . . 4 (norm‘((𝐴 + 𝐵) − (2 · 𝐶))) ∈ ℝ
98resqcli 13903 . . 3 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℝ
109recni 10989 . 2 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℂ
111, 2hvsubcli 29383 . . . . 5 (𝐴 𝐵) ∈ ℋ
1211normcli 29493 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
1312resqcli 13903 . . 3 ((norm‘(𝐴 𝐵))↑2) ∈ ℝ
1413recni 10989 . 2 ((norm‘(𝐴 𝐵))↑2) ∈ ℂ
15 4cn 12058 . . . . 5 4 ∈ ℂ
161, 5hvsubcli 29383 . . . . . . . 8 (𝐴 𝐶) ∈ ℋ
1716normcli 29493 . . . . . . 7 (norm‘(𝐴 𝐶)) ∈ ℝ
1817resqcli 13903 . . . . . 6 ((norm‘(𝐴 𝐶))↑2) ∈ ℝ
1918recni 10989 . . . . 5 ((norm‘(𝐴 𝐶))↑2) ∈ ℂ
2015, 19mulcli 10982 . . . 4 (4 · ((norm‘(𝐴 𝐶))↑2)) ∈ ℂ
212, 5hvsubcli 29383 . . . . . . . 8 (𝐵 𝐶) ∈ ℋ
2221normcli 29493 . . . . . . 7 (norm‘(𝐵 𝐶)) ∈ ℝ
2322resqcli 13903 . . . . . 6 ((norm‘(𝐵 𝐶))↑2) ∈ ℝ
2423recni 10989 . . . . 5 ((norm‘(𝐵 𝐶))↑2) ∈ ℂ
2515, 24mulcli 10982 . . . 4 (4 · ((norm‘(𝐵 𝐶))↑2)) ∈ ℂ
26 2ne0 12077 . . . 4 2 ≠ 0
2720, 25, 4, 26divdiri 11732 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2))
2820, 25addcomi 11166 . . . . . . 7 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
29 neg1cn 12087 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
3029, 6hvmulcli 29376 . . . . . . . . . . . . . . 15 (-1 · (2 · 𝐶)) ∈ ℋ
3129, 11hvmulcli 29376 . . . . . . . . . . . . . . 15 (-1 · (𝐴 𝐵)) ∈ ℋ
323, 30, 31hvadd32i 29416 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
333, 6hvsubvali 29382 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) − (2 · 𝐶)) = ((𝐴 + 𝐵) + (-1 · (2 · 𝐶)))
3433oveq1i 7285 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵)))
354, 2hvmulcli 29376 . . . . . . . . . . . . . . . 16 (2 · 𝐵) ∈ ℋ
3635, 6hvsubvali 29382 . . . . . . . . . . . . . . 15 ((2 · 𝐵) − (2 · 𝐶)) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
371, 2hvcomi 29381 . . . . . . . . . . . . . . . . . 18 (𝐴 + 𝐵) = (𝐵 + 𝐴)
381, 2hvnegdii 29424 . . . . . . . . . . . . . . . . . 18 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
3937, 38oveq12i 7287 . . . . . . . . . . . . . . . . 17 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = ((𝐵 + 𝐴) + (𝐵 𝐴))
402, 1hvsubcan2i 29426 . . . . . . . . . . . . . . . . 17 ((𝐵 + 𝐴) + (𝐵 𝐴)) = (2 · 𝐵)
4139, 40eqtri 2766 . . . . . . . . . . . . . . . 16 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = (2 · 𝐵)
4241oveq1i 7285 . . . . . . . . . . . . . . 15 (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶))) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
4336, 42eqtr4i 2769 . . . . . . . . . . . . . 14 ((2 · 𝐵) − (2 · 𝐶)) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
4432, 34, 433eqtr4i 2776 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = ((2 · 𝐵) − (2 · 𝐶))
457, 11hvsubvali 29382 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵)))
464, 2, 5hvsubdistr1i 29414 . . . . . . . . . . . . 13 (2 · (𝐵 𝐶)) = ((2 · 𝐵) − (2 · 𝐶))
4744, 45, 463eqtr4i 2776 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (2 · (𝐵 𝐶))
4847fveq2i 6777 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (norm‘(2 · (𝐵 𝐶)))
494, 21norm-iii-i 29501 . . . . . . . . . . 11 (norm‘(2 · (𝐵 𝐶))) = ((abs‘2) · (norm‘(𝐵 𝐶)))
50 0le2 12075 . . . . . . . . . . . . 13 0 ≤ 2
51 2re 12047 . . . . . . . . . . . . . 14 2 ∈ ℝ
5251absidi 15089 . . . . . . . . . . . . 13 (0 ≤ 2 → (abs‘2) = 2)
5350, 52ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
5453oveq1i 7285 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐵 𝐶))) = (2 · (norm‘(𝐵 𝐶)))
5548, 49, 543eqtri 2770 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (2 · (norm‘(𝐵 𝐶)))
5655oveq1i 7285 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐵 𝐶)))↑2)
5722recni 10989 . . . . . . . . . 10 (norm‘(𝐵 𝐶)) ∈ ℂ
584, 57sqmuli 13901 . . . . . . . . 9 ((2 · (norm‘(𝐵 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐵 𝐶))↑2))
59 sq2 13914 . . . . . . . . . 10 (2↑2) = 4
6059oveq1i 7285 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐵 𝐶))↑2)) = (4 · ((norm‘(𝐵 𝐶))↑2))
6156, 58, 603eqtri 2770 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐵 𝐶))↑2))
621, 2hvsubcan2i 29426 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
6362oveq1i 7285 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶))) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
643, 30, 11hvadd32i 29416 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶)))
654, 1hvmulcli 29376 . . . . . . . . . . . . . . 15 (2 · 𝐴) ∈ ℋ
6665, 6hvsubvali 29382 . . . . . . . . . . . . . 14 ((2 · 𝐴) − (2 · 𝐶)) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
6763, 64, 663eqtr4i 2776 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = ((2 · 𝐴) − (2 · 𝐶))
6833oveq1i 7285 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵))
694, 1, 5hvsubdistr1i 29414 . . . . . . . . . . . . 13 (2 · (𝐴 𝐶)) = ((2 · 𝐴) − (2 · 𝐶))
7067, 68, 693eqtr4i 2776 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (2 · (𝐴 𝐶))
7170fveq2i 6777 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (norm‘(2 · (𝐴 𝐶)))
724, 16norm-iii-i 29501 . . . . . . . . . . 11 (norm‘(2 · (𝐴 𝐶))) = ((abs‘2) · (norm‘(𝐴 𝐶)))
7353oveq1i 7285 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐴 𝐶))) = (2 · (norm‘(𝐴 𝐶)))
7471, 72, 733eqtri 2770 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (2 · (norm‘(𝐴 𝐶)))
7574oveq1i 7285 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐴 𝐶)))↑2)
7617recni 10989 . . . . . . . . . 10 (norm‘(𝐴 𝐶)) ∈ ℂ
774, 76sqmuli 13901 . . . . . . . . 9 ((2 · (norm‘(𝐴 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐴 𝐶))↑2))
7859oveq1i 7285 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐴 𝐶))↑2)) = (4 · ((norm‘(𝐴 𝐶))↑2))
7975, 77, 783eqtri 2770 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐴 𝐶))↑2))
8061, 79oveq12i 7287 . . . . . . 7 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
8128, 80eqtr4i 2769 . . . . . 6 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2))
827, 11normpari 29516 . . . . . 6 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8381, 82eqtri 2766 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8483oveq1i 7285 . . . 4 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2)
854, 10mulcli 10982 . . . . 5 (2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) ∈ ℂ
864, 14mulcli 10982 . . . . 5 (2 · ((norm‘(𝐴 𝐵))↑2)) ∈ ℂ
8785, 86, 4, 26divdiri 11732 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2))
8810, 4, 26divcan3i 11721 . . . . 5 ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) = ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)
8914, 4, 26divcan3i 11721 . . . . 5 ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2) = ((norm‘(𝐴 𝐵))↑2)
9088, 89oveq12i 7287 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2)) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9184, 87, 903eqtri 2770 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9215, 19, 4, 26div23i 11733 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐴 𝐶))↑2))
93 4d2e2 12143 . . . . . 6 (4 / 2) = 2
9493oveq1i 7285 . . . . 5 ((4 / 2) · ((norm‘(𝐴 𝐶))↑2)) = (2 · ((norm‘(𝐴 𝐶))↑2))
9592, 94eqtri 2766 . . . 4 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐴 𝐶))↑2))
9615, 24, 4, 26div23i 11733 . . . . 5 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐵 𝐶))↑2))
9793oveq1i 7285 . . . . 5 ((4 / 2) · ((norm‘(𝐵 𝐶))↑2)) = (2 · ((norm‘(𝐵 𝐶))↑2))
9896, 97eqtri 2766 . . . 4 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐵 𝐶))↑2))
9995, 98oveq12i 7287 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10027, 91, 993eqtr3i 2774 . 2 (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10110, 14, 100mvlladdi 11239 1 ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  4c4 12030  cexp 13782  abscabs 14945  chba 29281   + cva 29282   · csm 29283  normcno 29285   cmv 29287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-hnorm 29330  df-hvsub 29333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator