| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddcli | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
| hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvaddcli | ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvaddcl 30998 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℋchba 30905 +ℎ cva 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hfvadd 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: hvsubsub4i 31045 hvsubaddi 31052 normlem0 31095 normlem8 31103 norm-ii-i 31123 normpythi 31128 norm3difi 31133 normpari 31140 normpar2i 31142 polidi 31144 nonbooli 31637 lnopunilem1 31996 lnophmlem2 32003 |
| Copyright terms: Public domain | W3C validator |