Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvaddcli | Structured version Visualization version GIF version |
Description: Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvaddcli | ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvaddcl 29661 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7341 ℋchba 29568 +ℎ cva 29569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-hfvadd 29649 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-fv 6491 df-ov 7344 |
This theorem is referenced by: hvsubsub4i 29708 hvsubaddi 29715 normlem0 29758 normlem8 29766 norm-ii-i 29786 normpythi 29791 norm3difi 29796 normpari 29803 normpar2i 29805 polidi 29807 nonbooli 30300 lnopunilem1 30659 lnophmlem2 30666 |
Copyright terms: Public domain | W3C validator |