HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcli Structured version   Visualization version   GIF version

Theorem hvaddcli 31000
Description: Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvaddcl.1 𝐴 ∈ ℋ
hvaddcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvaddcli (𝐴 + 𝐵) ∈ ℋ

Proof of Theorem hvaddcli
StepHypRef Expression
1 hvaddcl.1 . 2 𝐴 ∈ ℋ
2 hvaddcl.2 . 2 𝐵 ∈ ℋ
3 hvaddcl 30994 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
41, 2, 3mp2an 692 1 (𝐴 + 𝐵) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  (class class class)co 7352  chba 30901   + cva 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-hfvadd 30982
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355
This theorem is referenced by:  hvsubsub4i  31041  hvsubaddi  31048  normlem0  31091  normlem8  31099  norm-ii-i  31119  normpythi  31124  norm3difi  31129  normpari  31136  normpar2i  31138  polidi  31140  nonbooli  31633  lnopunilem1  31992  lnophmlem2  31999
  Copyright terms: Public domain W3C validator