| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ich 47433 | . 2
⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) | 
| 2 |  | nfs1v 2156 | . . . . . . 7
⊢
Ⅎ𝑦[𝑏 / 𝑦]𝜑 | 
| 3 | 2 | nfsbv 2330 | . . . . . 6
⊢
Ⅎ𝑦[𝑎 / 𝑥][𝑏 / 𝑦]𝜑 | 
| 4 | 3 | nfsbv 2330 | . . . . 5
⊢
Ⅎ𝑦[𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 | 
| 5 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑎𝜑 | 
| 6 | 4, 5 | sbbib 2364 | . . . 4
⊢
(∀𝑦([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑)) | 
| 7 | 6 | albii 1819 | . . 3
⊢
(∀𝑥∀𝑦([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑥∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑)) | 
| 8 |  | sbco4 2102 | . . . . 5
⊢ ([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑) | 
| 9 | 8 | bibi1i 338 | . . . 4
⊢ (([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) | 
| 10 | 9 | 2albii 1820 | . . 3
⊢
(∀𝑥∀𝑦([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) | 
| 11 |  | alcom 2159 | . . . 4
⊢
(∀𝑥∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑎∀𝑥([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑)) | 
| 12 |  | nfs1v 2156 | . . . . . 6
⊢
Ⅎ𝑥[𝑎 / 𝑥][𝑏 / 𝑦]𝜑 | 
| 13 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑏[𝑎 / 𝑦]𝜑 | 
| 14 | 12, 13 | sbbib 2364 | . . . . 5
⊢
(∀𝑥([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | 
| 15 | 14 | albii 1819 | . . . 4
⊢
(∀𝑎∀𝑥([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | 
| 16 | 11, 15 | bitri 275 | . . 3
⊢
(∀𝑥∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | 
| 17 | 7, 10, 16 | 3bitr3i 301 | . 2
⊢
(∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | 
| 18 | 1, 17 | bitri 275 | 1
⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) |