| Step | Hyp | Ref
| Expression |
| 1 | | df-ich 47427 |
. 2
⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) |
| 2 | | nfs1v 2157 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑏 / 𝑦]𝜑 |
| 3 | 2 | nfsbv 2331 |
. . . . . 6
⊢
Ⅎ𝑦[𝑎 / 𝑥][𝑏 / 𝑦]𝜑 |
| 4 | 3 | nfsbv 2331 |
. . . . 5
⊢
Ⅎ𝑦[𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 |
| 5 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑎𝜑 |
| 6 | 4, 5 | sbbib 2364 |
. . . 4
⊢
(∀𝑦([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑)) |
| 7 | 6 | albii 1819 |
. . 3
⊢
(∀𝑥∀𝑦([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑥∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑)) |
| 8 | | sbco4 2103 |
. . . . 5
⊢ ([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑) |
| 9 | 8 | bibi1i 338 |
. . . 4
⊢ (([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) |
| 10 | 9 | 2albii 1820 |
. . 3
⊢
(∀𝑥∀𝑦([𝑦 / 𝑎][𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) |
| 11 | | alcom 2160 |
. . . 4
⊢
(∀𝑥∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑎∀𝑥([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑)) |
| 12 | | nfs1v 2157 |
. . . . . 6
⊢
Ⅎ𝑥[𝑎 / 𝑥][𝑏 / 𝑦]𝜑 |
| 13 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑏[𝑎 / 𝑦]𝜑 |
| 14 | 12, 13 | sbbib 2364 |
. . . . 5
⊢
(∀𝑥([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) |
| 15 | 14 | albii 1819 |
. . . 4
⊢
(∀𝑎∀𝑥([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) |
| 16 | 11, 15 | bitri 275 |
. . 3
⊢
(∀𝑥∀𝑎([𝑥 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑦]𝜑) ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) |
| 17 | 7, 10, 16 | 3bitr3i 301 |
. 2
⊢
(∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑) ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) |
| 18 | 1, 17 | bitri 275 |
1
⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) |