Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifeq3da Structured version   Visualization version   GIF version

Theorem ifeq3da 32469
Description: Given an expression 𝐶 containing if(𝜓, 𝐸, 𝐹), substitute (hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both cases at the same time. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
ifeq3da.1 (if(𝜓, 𝐸, 𝐹) = 𝐸𝐶 = 𝐺)
ifeq3da.2 (if(𝜓, 𝐸, 𝐹) = 𝐹𝐶 = 𝐻)
ifeq3da.3 (𝜑𝐺 = 𝐴)
ifeq3da.4 (𝜑𝐻 = 𝐵)
Assertion
Ref Expression
ifeq3da (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶)

Proof of Theorem ifeq3da
StepHypRef Expression
1 iftrue 4539 . . . . 5 (𝜓 → if(𝜓, 𝐸, 𝐹) = 𝐸)
2 ifeq3da.1 . . . . 5 (if(𝜓, 𝐸, 𝐹) = 𝐸𝐶 = 𝐺)
31, 2syl 17 . . . 4 (𝜓𝐶 = 𝐺)
43adantl 480 . . 3 ((𝜑𝜓) → 𝐶 = 𝐺)
5 ifeq3da.3 . . . 4 (𝜑𝐺 = 𝐴)
65adantr 479 . . 3 ((𝜑𝜓) → 𝐺 = 𝐴)
74, 6eqtr2d 2767 . 2 ((𝜑𝜓) → 𝐴 = 𝐶)
8 iffalse 4542 . . . . 5 𝜓 → if(𝜓, 𝐸, 𝐹) = 𝐹)
9 ifeq3da.2 . . . . 5 (if(𝜓, 𝐸, 𝐹) = 𝐹𝐶 = 𝐻)
108, 9syl 17 . . . 4 𝜓𝐶 = 𝐻)
1110adantl 480 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐶 = 𝐻)
12 ifeq3da.4 . . . 4 (𝜑𝐻 = 𝐵)
1312adantr 479 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐻 = 𝐵)
1411, 13eqtr2d 2767 . 2 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶)
157, 14ifeqda 4569 1 (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  ifcif 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-if 4534
This theorem is referenced by:  circlemeth  34488
  Copyright terms: Public domain W3C validator