Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifnetrue Structured version   Visualization version   GIF version

Theorem ifnetrue 32570
Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnetrue ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)

Proof of Theorem ifnetrue
StepHypRef Expression
1 iffalse 4557 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
21adantl 481 . 2 (((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵)
3 simplr 768 . . . 4 (((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴)
4 simpll 766 . . . 4 (((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → 𝐴𝐵)
53, 4eqnetrd 3014 . . 3 (((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐵)
65neneqd 2951 . 2 (((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐵)
72, 6condan 817 1 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wne 2946  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-if 4549
This theorem is referenced by:  ifnebib  32572
  Copyright terms: Public domain W3C validator