![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifnetrue | Structured version Visualization version GIF version |
Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
Ref | Expression |
---|---|
ifnetrue | ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalse 4539 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
2 | 1 | adantl 480 | . 2 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) |
3 | simplr 767 | . . . 4 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
4 | simpll 765 | . . . 4 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → 𝐴 ≠ 𝐵) | |
5 | 3, 4 | eqnetrd 2997 | . . 3 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐵) |
6 | 5 | neneqd 2934 | . 2 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐵) |
7 | 2, 6 | condan 816 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ≠ wne 2929 ifcif 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-if 4531 |
This theorem is referenced by: ifnebib 32419 |
Copyright terms: Public domain | W3C validator |