Home | Metamath
Proof Explorer Theorem List (p. 319 of 461) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28865) |
Hilbert Space Explorer
(28866-30388) |
Users' Mathboxes
(30389-46009) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ismbfm 31801* | The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 24392. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) | ||
Theorem | elunirnmbfm 31802* | The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | ||
Theorem | mbfmfun 31803 | A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | mbfmf 31804 | A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) | ||
Theorem | isanmbfm 31805 | The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmcnvima 31806 | The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) | ||
Theorem | mbfmbfm 31807 | A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmcst 31808* | A constant function is measurable. Cf. mbfconst 24397. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ∪ 𝑆 ↦ 𝐴)) & ⊢ (𝜑 → 𝐴 ∈ ∪ 𝑇) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | ||
Theorem | 1stmbfm 31809 | The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (1st ↾ (∪ 𝑆 × ∪ 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆)) | ||
Theorem | 2ndmbfm 31810 | The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (2nd ↾ (∪ 𝑆 × ∪ 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇)) | ||
Theorem | imambfm 31811* | If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝐾 ∈ V) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) | ||
Theorem | cnmbfm 31812 | A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) & ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | ||
Theorem | mbfmco 31813 | The composition of two measurable functions is measurable. See cnmpt11 22426. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) | ||
Theorem | mbfmco2 31814* | The pair building of two measurable functions is measurable. ( cf. cnmpt1t 22428). (Contributed by Thierry Arnoux, 6-Jun-2017.) |
⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (𝑅MblFnM𝑇)) & ⊢ 𝐻 = (𝑥 ∈ ∪ 𝑅 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇))) | ||
Theorem | mbfmvolf 31815 | Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹:ℝ⟶ℝ) | ||
Theorem | elmbfmvol2 31816 | Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) | ||
Theorem | mbfmcnt 31817 | All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) = (ℝ ↑m 𝑂)) | ||
Theorem | br2base 31818* | The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ ∪ ran (𝑥 ∈ 𝔅ℝ, 𝑦 ∈ 𝔅ℝ ↦ (𝑥 × 𝑦)) = (ℝ × ℝ) | ||
Theorem | dya2ub 31819 | An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) | ||
Theorem | sxbrsigalem0 31820* | The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.) |
⊢ ∪ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ) | ||
Theorem | sxbrsigalem3 31821* | The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) | ||
Theorem | dya2iocival 31822* | The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 24364. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | ||
Theorem | dya2iocress 31823* | Dyadic intervals are subsets of ℝ. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ) | ||
Theorem | dya2iocbrsiga 31824* | Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) | ||
Theorem | dya2icobrsiga 31825* | Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ran 𝐼 ⊆ 𝔅ℝ | ||
Theorem | dya2icoseg 31826* | For any point and any closed-below, open-above interval of ℝ centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑁 = (⌊‘(1 − (2 logb 𝐷))) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) | ||
Theorem | dya2icoseg2 31827* | For any point and any open interval of ℝ containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋 ∈ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐸)) | ||
Theorem | dya2iocrfn 31828* | The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) | ||
Theorem | dya2iocct 31829* | The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ran 𝑅 ≼ ω | ||
Theorem | dya2iocnrect 31830* | For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) & ⊢ 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) | ||
Theorem | dya2iocnei 31831* | For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) | ||
Theorem | dya2iocuni 31832* | Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 31829. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅∪ 𝑐 = 𝐴) | ||
Theorem | dya2iocucvr 31833* | The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ∪ ran 𝑅 = (ℝ × ℝ) | ||
Theorem | sxbrsigalem1 31834* | The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) | ||
Theorem | sxbrsigalem2 31835* | The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) | ||
Theorem | sxbrsigalem4 31836* | The Borel algebra on (ℝ × ℝ) is generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). Proposition 1.1.5 of [Cohn] p. 4 . Note that the interval used in this formalization are closed-below, open-above instead of open-below, closed-above in the proof as they are ultimately generated by the floor function. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) | ||
Theorem | sxbrsigalem5 31837* | First direction for sxbrsiga 31839. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) | ||
Theorem | sxbrsigalem6 31838 | First direction for sxbrsiga 31839, same as sxbrsigalem6, dealing with the antecedents. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) | ||
Theorem | sxbrsiga 31839 | The product sigma-algebra (𝔅ℝ ×s 𝔅ℝ) is the Borel algebra on (ℝ × ℝ) See example 5.1.1 of [Cohn] p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘(𝐽 ×t 𝐽)) | ||
In this section, we define a function toOMeas which constructs an outer measure, from a pre-measure 𝑅. An explicit generic definition of an outer measure is not given. It consists of the three following statements: - the outer measure of an empty set is zero (oms0 31846) - it is monotone (omsmon 31847) - it is countably sub-additive (omssubadd 31849) See Definition 1.11.1 of [Bogachev] p. 41. | ||
Syntax | coms 31840 | Class declaration for the outer measure construction function. |
class toOMeas | ||
Definition | df-oms 31841* | Define a function constructing an outer measure. See omsval 31842 for its value. Definition 1.5 of [Bogachev] p. 16. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) | ||
Theorem | omsval 31842* | Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | ||
Theorem | omsfval 31843* | Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | ||
Theorem | omscl 31844* | A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | ||
Theorem | omsf 31845 | A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) | ||
Theorem | oms0 31846 | A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → ∅ ∈ dom 𝑅) & ⊢ (𝜑 → (𝑅‘∅) = 0) ⇒ ⊢ (𝜑 → (𝑀‘∅) = 0) | ||
Theorem | omsmon 31847 | A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝑄) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | omssubaddlem 31848* | For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑄) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) | ||
Theorem | omssubadd 31849* | A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝐴 ⊆ ∪ 𝑄) & ⊢ (𝜑 → 𝑋 ≼ ω) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑦 ∈ 𝑋 𝐴) ≤ Σ*𝑦 ∈ 𝑋(𝑀‘𝐴)) | ||
Syntax | ccarsg 31850 | Class declaration for the Caratheodory sigma-Algebra construction. |
class toCaraSiga | ||
Definition | df-carsg 31851* | Define a function constructing Caratheodory measurable sets for a given outer measure. See carsgval 31852 for its value. Definition 1.11.2 of [Bogachev] p. 41. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) | ||
Theorem | carsgval 31852* | Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) | ||
Theorem | carsgcl 31853 | Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) | ||
Theorem | elcarsg 31854* | Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) | ||
Theorem | baselcarsg 31855 | The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) | ||
Theorem | 0elcarsg 31856 | The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsguni 31857 | The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → ∪ (toCaraSiga‘𝑀) = 𝑂) | ||
Theorem | elcarsgss 31858 | Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | ||
Theorem | difelcarsg 31859 | The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝑂 ∖ 𝐴) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | inelcarsg 31860* | The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) & ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | unelcarsg 31861* | The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) & ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | difelcarsg2 31862* | The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) & ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsgmon 31863* | Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | carsgsigalem 31864* | Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) | ||
Theorem | fiunelcarsg 31865* | The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsgclctunlem1 31866* | Lemma for carsgclctun 31870. (Contributed by Thierry Arnoux, 23-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑂) ⇒ ⊢ (𝜑 → (𝑀‘(𝐸 ∩ ∪ 𝐴)) = Σ*𝑦 ∈ 𝐴(𝑀‘(𝐸 ∩ 𝑦))) | ||
Theorem | carsggect 31867* | The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ (𝜑 → ¬ ∅ ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ⇒ ⊢ (𝜑 → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ (𝑀‘∪ 𝐴)) | ||
Theorem | carsgclctunlem2 31868* | Lemma for carsgclctun 31870. (Contributed by Thierry Arnoux, 25-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) & ⊢ (𝜑 → Disj 𝑘 ∈ ℕ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑂) & ⊢ (𝜑 → (𝑀‘𝐸) ≠ +∞) ⇒ ⊢ (𝜑 → ((𝑀‘(𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀‘𝐸)) | ||
Theorem | carsgclctunlem3 31869* | Lemma for carsgclctun 31870. (Contributed by Thierry Arnoux, 24-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑂) ⇒ ⊢ (𝜑 → ((𝑀‘(𝐸 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝐸 ∖ ∪ 𝐴))) ≤ (𝑀‘𝐸)) | ||
Theorem | carsgclctun 31870* | The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsgsiga 31871* | The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂)) | ||
Theorem | omsmeas 31872 | The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ 𝑆 = (toCaraSiga‘𝑀) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → ∅ ∈ dom 𝑅) & ⊢ (𝜑 → (𝑅‘∅) = 0) ⇒ ⊢ (𝜑 → (𝑀 ↾ 𝑆) ∈ (measures‘𝑆)) | ||
Theorem | pmeasmono 31873* | This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑃‘∅) = 0) & ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑅) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑃‘𝐴) ≤ (𝑃‘𝐵)) | ||
Theorem | pmeasadd 31874* | A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑃‘∅) = 0) & ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) & ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} & ⊢ (𝜑 → 𝑅 ∈ 𝑄) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) | ||
Theorem | itgeq12dv 31875* | Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) | ||
Syntax | citgm 31876 | Extend class notation with the (measure) Bochner integral. |
class itgm | ||
Syntax | csitm 31877 | Extend class notation with the integral metric for simple functions. |
class sitm | ||
Syntax | csitg 31878 | Extend class notation with the integral of simple functions. |
class sitg | ||
Definition | df-sitg 31879* |
Define the integral of simple functions from a measurable space
dom 𝑚 to a generic space 𝑤
equipped with the right scalar
product. 𝑤 will later be required to be a Banach
space.
These simple functions are required to take finitely many different values: this is expressed by ran 𝑔 ∈ Fin in the definition. Moreover, for each 𝑥, the pre-image (◡𝑔 “ {𝑥}) is requested to be measurable, of finite measure. In this definition, (sigaGen‘(TopOpen‘𝑤)) is the Borel sigma-algebra on 𝑤, and the functions 𝑔 range over the measurable functions over that Borel algebra. Definition 2.4.1 of [Bogachev] p. 118. (Contributed by Thierry Arnoux, 21-Oct-2017.) |
⊢ sitg = (𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠 ‘𝑤)𝑥))))) | ||
Definition | df-sitm 31880* | Define the integral metric for simple functions, as the integral of the distances between the function values. Since distances take nonnegative values in ℝ*, the range structure for this integral is (ℝ*𝑠 ↾s (0[,]+∞)). See definition 2.3.1 of [Bogachev] p. 116. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ sitm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)))) | ||
Theorem | sitgval 31881* | Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) ⇒ ⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) | ||
Theorem | issibf 31882* | The predicate "𝐹 is a simple function" relative to the Bochner integral. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) | ||
Theorem | sibf0 31883 | The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ Mnd) ⇒ ⊢ (𝜑 → (∪ dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀)) | ||
Theorem | sibfmbl 31884 | A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) | ||
Theorem | sibff 31885 | A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) | ||
Theorem | sibfrn 31886 | A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
Theorem | sibfima 31887 | Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝐴})) ∈ (0[,)+∞)) | ||
Theorem | sibfinima 31888 | The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝐽 ∈ Fre) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞)) | ||
Theorem | sibfof 31889 | Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ 𝐶 = (Base‘𝐾) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) & ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝐾 ∈ TopSp) & ⊢ (𝜑 → 𝐽 ∈ Fre) & ⊢ (𝜑 → ( 0 + 0 ) = (0g‘𝐾)) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀)) | ||
Theorem | sitgfval 31890* | Value of the Bochner integral for a simple function 𝐹. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥)))) | ||
Theorem | sitgclg 31891* | Closure of the Bochner integral on simple functions, generic version. See sitgclbn 31892 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥 ∈ 𝐵) → (𝑚 · 𝑥) ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) | ||
Theorem | sitgclbn 31892 | Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝑊 ∈ Ban) & ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) ⇒ ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) | ||
Theorem | sitgclcn 31893 | Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the complex numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝑊 ∈ Ban) & ⊢ (𝜑 → (Scalar‘𝑊) = ℂfld) ⇒ ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) | ||
Theorem | sitgclre 31894 | Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝑊 ∈ Ban) & ⊢ (𝜑 → (Scalar‘𝑊) = ℝfld) ⇒ ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) | ||
Theorem | sitg0 31895 | The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ Mnd) ⇒ ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) | ||
Theorem | sitgf 31896* | The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) | ||
Theorem | sitgaddlemb 31897 | Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑆 = (sigaGen‘𝐽) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → (𝑊 ↾v (𝐻 “ (0[,)+∞))) ∈ SLMod) & ⊢ (𝜑 → 𝐽 ∈ Fre) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {〈 0 , 0 〉})) → ((𝐻‘(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) · (2nd ‘𝑝)) ∈ 𝐵) | ||
Theorem | sitmval 31898* | Value of the simple function integral metric for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐷 = (dist‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) ⇒ ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) | ||
Theorem | sitmfval 31899 | Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐷 = (dist‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) | ||
Theorem | sitmcl 31900 | Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
⊢ (𝜑 → 𝑊 ∈ Mnd) & ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) & ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) ⇒ ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |