| Metamath
Proof Explorer Theorem List (p. 319 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hmopf 31801 | A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | ||
| Theorem | hmopex 31802 | The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
| ⊢ HrmOp ∈ V | ||
| Theorem | nmfnval 31803* | Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
| Theorem | nmfnsetre 31804* | The set in the supremum of the functional norm definition df-nmfn 31772 is a set of reals. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
| Theorem | nmfnsetn0 31805* | The set in the supremum of the functional norm definition df-nmfn 31772 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} | ||
| Theorem | nmfnxr 31806 | The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) ∈ ℝ*) | ||
| Theorem | nmfnrepnf 31807 | The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → ((normfn‘𝑇) ∈ ℝ ↔ (normfn‘𝑇) ≠ +∞)) | ||
| Theorem | nlfnval 31808 | Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | ||
| Theorem | elcnfn 31809* | Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) | ||
| Theorem | ellnfn 31810* | Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) | ||
| Theorem | lnfnf 31811 | A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | ||
| Theorem | dfadj2 31812* | Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))} | ||
| Theorem | funadj 31813 | Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ Fun adjℎ | ||
| Theorem | dmadjss 31814 | The domain of the adjoint function is a subset of the maps from ℋ to ℋ. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ dom adjℎ ⊆ ( ℋ ↑m ℋ) | ||
| Theorem | dmadjop 31815 | A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | ||
| Theorem | adjeu 31816* | Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
| Theorem | adjval 31817* | Value of the adjoint function for 𝑇 in the domain of adjℎ. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
| Theorem | adjval2 31818* | Value of the adjoint function. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))) | ||
| Theorem | cnvadj 31819 | The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ◡adjℎ = adjℎ | ||
| Theorem | funcnvadj 31820 | The converse of the adjoint function is a function. (Contributed by NM, 25-Jan-2006.) (New usage is discouraged.) |
| ⊢ Fun ◡adjℎ | ||
| Theorem | adj1o 31821 | The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ | ||
| Theorem | dmadjrn 31822 | The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ dom adjℎ) | ||
| Theorem | eigvecval 31823* | The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) | ||
| Theorem | eigvalfval 31824* | The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
| Theorem | specval 31825* | The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
| Theorem | speccl 31826 | The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ) | ||
| Theorem | hhlnoi 31827 | The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐿 = (𝑈 LnOp 𝑈) ⇒ ⊢ LinOp = 𝐿 | ||
| Theorem | hhnmoi 31828 | The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑁 = (𝑈 normOpOLD 𝑈) ⇒ ⊢ normop = 𝑁 | ||
| Theorem | hhbloi 31829 | A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ BndLinOp = 𝐵 | ||
| Theorem | hh0oi 31830 | The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑍 = (𝑈 0op 𝑈) ⇒ ⊢ 0hop = 𝑍 | ||
| Theorem | hhcno 31831 | The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ContOp = (𝐽 Cn 𝐽) | ||
| Theorem | hhcnf 31832 | The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ContFn = (𝐽 Cn 𝐾) | ||
| Theorem | dmadjrnb 31833 | The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv 6910.) (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ ↔ (adjℎ‘𝑇) ∈ dom adjℎ) | ||
| Theorem | nmoplb 31834 | A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ (normop‘𝑇)) | ||
| Theorem | nmopub 31835* | An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (normℎ‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nmopub2tALT 31836* | An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
| Theorem | nmopub2tHIL 31837* | An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
| Theorem | nmopge0 31838 | The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → 0 ≤ (normop‘𝑇)) | ||
| Theorem | nmopgt0 31839 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ≠ 0 ↔ 0 < (normop‘𝑇))) | ||
| Theorem | cnopc 31840* | Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℋ ((normℎ‘(𝑦 −ℎ 𝐴)) < 𝑥 → (normℎ‘((𝑇‘𝑦) −ℎ (𝑇‘𝐴))) < 𝐵)) | ||
| Theorem | lnopl 31841 | Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
| Theorem | unop 31842 | Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) | ||
| Theorem | unopf1o 31843 | A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | ||
| Theorem | unopnorm 31844 | A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘𝐴)) | ||
| Theorem | cnvunop 31845 | The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) | ||
| Theorem | unopadj 31846 | The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) | ||
| Theorem | unoplin 31847 | A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) | ||
| Theorem | counop 31848 | The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) | ||
| Theorem | hmop 31849 | Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) | ||
| Theorem | hmopre 31850 | The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ) | ||
| Theorem | nmfnlb 31851 | A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) | ||
| Theorem | nmfnleub 31852* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nmfnleub2 31853* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normfn‘𝑇) ≤ 𝐴) | ||
| Theorem | nmfnge0 31854 | The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → 0 ≤ (normfn‘𝑇)) | ||
| Theorem | elnlfn 31855 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) | ||
| Theorem | elnlfn2 31856 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ (null‘𝑇)) → (𝑇‘𝐴) = 0) | ||
| Theorem | cnfnc 31857* | Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℋ ((normℎ‘(𝑦 −ℎ 𝐴)) < 𝑥 → (abs‘((𝑇‘𝑦) − (𝑇‘𝐴))) < 𝐵)) | ||
| Theorem | lnfnl 31858 | Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
| Theorem | adjcl 31859 | Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | ||
| Theorem | adj1 31860 | Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = (((adjℎ‘𝑇)‘𝐴) ·ih 𝐵)) | ||
| Theorem | adj2 31861 | Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) | ||
| Theorem | adjeq 31862* | A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))) → (adjℎ‘𝑇) = 𝑆) | ||
| Theorem | adjadj 31863 | Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) | ||
| Theorem | adjvalval 31864* | Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) | ||
| Theorem | unopadj2 31865 | The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → (adjℎ‘𝑇) = ◡𝑇) | ||
| Theorem | hmopadj 31866 | A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | ||
| Theorem | hmdmadj 31867 | Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ dom adjℎ) | ||
| Theorem | hmopadj2 31868 | An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) | ||
| Theorem | hmoplin 31869 | A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | ||
| Theorem | brafval 31870* | The bra of a vector, expressed as 〈𝐴 ∣ in Dirac notation. See df-bra 31777. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))) | ||
| Theorem | braval 31871 | A bra-ket juxtaposition, expressed as 〈𝐴 ∣ 𝐵〉 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) | ||
| Theorem | braadd 31872 | Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) | ||
| Theorem | bramul 31873 | Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) | ||
| Theorem | brafn 31874 | The bra function is a functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | ||
| Theorem | bralnfn 31875 | The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) | ||
| Theorem | bracl 31876 | Closure of the bra function. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ) | ||
| Theorem | bra0 31877 | The Dirac bra of the zero vector. (Contributed by NM, 25-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ (bra‘0ℎ) = ( ℋ × {0}) | ||
| Theorem | brafnmul 31878 | Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) | ||
| Theorem | kbfval 31879* | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 31778. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | ||
| Theorem | kbop 31880 | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) | ||
| Theorem | kbval 31881 | The value of the operator resulting from the outer product ∣ 𝐴〉 〈𝐵 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) | ||
| Theorem | kbmul 31882 | Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) | ||
| Theorem | kbpj 31883 | If a vector 𝐴 has norm 1, the outer product ∣ 𝐴〉〈𝐴 ∣ is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → (𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴}))) | ||
| Theorem | eleigvec 31884* | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) | ||
| Theorem | eleigvec2 31885 | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ (𝑇‘𝐴) ∈ (span‘{𝐴})))) | ||
| Theorem | eleigveccl 31886 | Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) | ||
| Theorem | eigvalval 31887 | The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) | ||
| Theorem | eigvalcl 31888 | An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ) | ||
| Theorem | eigvec1 31889 | Property of an eigenvector. (Contributed by NM, 12-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) | ||
| Theorem | eighmre 31890 | The eigenvalues of a Hermitian operator are real. Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ) | ||
| Theorem | eighmorth 31891 | Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0) | ||
| Theorem | nmopnegi 31892 | Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 31958, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) | ||
| Theorem | lnop0 31893 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | ||
| Theorem | lnopmul 31894 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopli 31895 | Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
| Theorem | lnopfi 31896 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ 𝑇: ℋ⟶ ℋ | ||
| Theorem | lnop0i 31897 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇‘0ℎ) = 0ℎ | ||
| Theorem | lnopaddi 31898 | Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopmuli 31899 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopaddmuli 31900 | Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) +ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |