| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4497 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4500 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: somincom 6110 cantnfp1 9641 ccatsymb 14554 swrdccat3blem 14711 repswccat 14758 ccatco 14808 bitsinvp1 16426 xrsdsreval 21335 fvmptnn04if 22743 chfacfscmulgsum 22754 chfacfpmmulgsum 22758 oprpiece1res2 24857 phtpycc 24897 atantayl2 26855 ifeq3da 32482 fprodex01 32757 psgnfzto1stlem 33064 fzto1st1 33066 cycpm2tr 33083 elrgspnlem4 33203 elrspunsn 33407 fldextrspunlsp 33676 mdetlap1 33823 madjusmdetlem1 33824 madjusmdetlem2 33825 ccatmulgnn0dir 34540 plymulx 34546 itgexpif 34604 repr0 34609 elmrsubrn 35514 matunitlindflem1 37617 sticksstones12 42153 redvmptabs 42355 readvrec 42357 frlmvscadiccat 42501 fsuppind 42585 fsuppssindlem1 42586 reabsifneg 43628 reabsifnpos 43629 reabsifpos 43630 reabsifnneg 43631 reabssgn 43632 sqrtcval 43637 mnringmulrcld 44224 fourierdlem101 46212 hoidmv1lelem2 46597 dfafv2 47137 m1modmmod 47363 linc0scn0 48416 digexp 48600 |
| Copyright terms: Public domain | W3C validator |