| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4490 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4493 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4485 |
| This theorem is referenced by: somincom 6095 cantnfp1 9610 ccatsymb 14523 swrdccat3blem 14680 repswccat 14727 ccatco 14777 bitsinvp1 16395 xrsdsreval 21304 fvmptnn04if 22712 chfacfscmulgsum 22723 chfacfpmmulgsum 22727 oprpiece1res2 24826 phtpycc 24866 atantayl2 26824 ifeq3da 32448 fprodex01 32723 psgnfzto1stlem 33030 fzto1st1 33032 cycpm2tr 33049 elrgspnlem4 33169 elrspunsn 33373 fldextrspunlsp 33642 mdetlap1 33789 madjusmdetlem1 33790 madjusmdetlem2 33791 ccatmulgnn0dir 34506 plymulx 34512 itgexpif 34570 repr0 34575 elmrsubrn 35480 matunitlindflem1 37583 sticksstones12 42119 redvmptabs 42321 readvrec 42323 frlmvscadiccat 42467 fsuppind 42551 fsuppssindlem1 42552 reabsifneg 43594 reabsifnpos 43595 reabsifpos 43596 reabsifnneg 43597 reabssgn 43598 sqrtcval 43603 mnringmulrcld 44190 fourierdlem101 46178 hoidmv1lelem2 46563 dfafv2 47106 m1modmmod 47332 linc0scn0 48385 digexp 48569 |
| Copyright terms: Public domain | W3C validator |