| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4482 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4485 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 |
| This theorem is referenced by: somincom 6088 cantnfp1 9582 ccatsymb 14497 swrdccat3blem 14653 repswccat 14700 ccatco 14749 bitsinvp1 16367 xrsdsreval 21357 fvmptnn04if 22784 chfacfscmulgsum 22795 chfacfpmmulgsum 22799 oprpiece1res2 24897 phtpycc 24937 atantayl2 26895 ifeq3da 32547 fprodex01 32834 psgnfzto1stlem 33110 fzto1st1 33112 cycpm2tr 33129 elrgspnlem4 33255 elrspunsn 33438 esplyind 33659 fldextrspunlsp 33759 mdetlap1 33911 madjusmdetlem1 33912 madjusmdetlem2 33913 ccatmulgnn0dir 34627 plymulx 34633 itgexpif 34691 repr0 34696 elmrsubrn 35636 matunitlindflem1 37729 sticksstones12 42324 redvmptabs 42530 readvrec 42532 frlmvscadiccat 42676 fsuppind 42748 fsuppssindlem1 42749 reabsifneg 43789 reabsifnpos 43790 reabsifpos 43791 reabsifnneg 43792 reabssgn 43793 sqrtcval 43798 mnringmulrcld 44385 fourierdlem101 46367 hoidmv1lelem2 46752 dfafv2 47294 m1modmmod 47520 linc0scn0 48585 digexp 48769 |
| Copyright terms: Public domain | W3C validator |