![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version |
Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
Ref | Expression |
---|---|
ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4535 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
5 | iffalse 4538 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
8 | 6, 7 | eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: somincom 6136 cantnfp1 9676 ccatsymb 14532 swrdccat3blem 14689 repswccat 14736 ccatco 14786 bitsinvp1 16390 xrsdsreval 20990 fvmptnn04if 22351 chfacfscmulgsum 22362 chfacfpmmulgsum 22366 oprpiece1res2 24468 phtpycc 24507 atantayl2 26443 ifeq3da 31809 fprodex01 32062 psgnfzto1stlem 32290 fzto1st1 32292 cycpm2tr 32309 elrspunsn 32578 mdetlap1 32837 madjusmdetlem1 32838 madjusmdetlem2 32839 ccatmulgnn0dir 33584 plymulx 33590 itgexpif 33649 repr0 33654 elmrsubrn 34542 matunitlindflem1 36532 sticksstones12 41022 frlmvscadiccat 41128 fsuppind 41210 fsuppssindlem1 41211 reabsifneg 42431 reabsifnpos 42432 reabsifpos 42433 reabsifnneg 42434 reabssgn 42435 sqrtcval 42440 mnringmulrcld 43035 fourierdlem101 44971 hoidmv1lelem2 45356 dfafv2 45888 linc0scn0 47152 m1modmmod 47255 digexp 47341 |
Copyright terms: Public domain | W3C validator |