| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4509 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: somincom 6123 cantnfp1 9695 ccatsymb 14600 swrdccat3blem 14757 repswccat 14804 ccatco 14854 bitsinvp1 16468 xrsdsreval 21379 fvmptnn04if 22787 chfacfscmulgsum 22798 chfacfpmmulgsum 22802 oprpiece1res2 24901 phtpycc 24941 atantayl2 26900 ifeq3da 32527 fprodex01 32804 psgnfzto1stlem 33111 fzto1st1 33113 cycpm2tr 33130 elrgspnlem4 33240 elrspunsn 33444 fldextrspunlsp 33715 mdetlap1 33857 madjusmdetlem1 33858 madjusmdetlem2 33859 ccatmulgnn0dir 34574 plymulx 34580 itgexpif 34638 repr0 34643 elmrsubrn 35542 matunitlindflem1 37640 sticksstones12 42171 redvmptabs 42403 readvrec 42405 frlmvscadiccat 42529 fsuppind 42613 fsuppssindlem1 42614 reabsifneg 43656 reabsifnpos 43657 reabsifpos 43658 reabsifnneg 43659 reabssgn 43660 sqrtcval 43665 mnringmulrcld 44252 fourierdlem101 46236 hoidmv1lelem2 46621 dfafv2 47161 linc0scn0 48399 m1modmmod 48501 digexp 48587 |
| Copyright terms: Public domain | W3C validator |