Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version |
Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
Ref | Expression |
---|---|
ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4465 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
5 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
8 | 6, 7 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
9 | 4, 8 | pm2.61dan 810 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 |
This theorem is referenced by: somincom 6039 cantnfp1 9439 ccatsymb 14287 swrdccat3blem 14452 repswccat 14499 ccatco 14548 bitsinvp1 16156 xrsdsreval 20643 fvmptnn04if 21998 chfacfscmulgsum 22009 chfacfpmmulgsum 22013 oprpiece1res2 24115 phtpycc 24154 atantayl2 26088 ifeq3da 30889 fprodex01 31139 psgnfzto1stlem 31367 fzto1st1 31369 cycpm2tr 31386 mdetlap1 31776 madjusmdetlem1 31777 madjusmdetlem2 31778 ccatmulgnn0dir 32521 plymulx 32527 itgexpif 32586 repr0 32591 elmrsubrn 33482 matunitlindflem1 35773 sticksstones12 40114 frlmvscadiccat 40237 fsuppind 40279 fsuppssindlem1 40280 reabsifneg 41240 reabsifnpos 41241 reabsifpos 41242 reabsifnneg 41243 reabssgn 41244 sqrtcval 41249 mnringmulrcld 41846 fourierdlem101 43748 hoidmv1lelem2 44130 dfafv2 44624 linc0scn0 45764 m1modmmod 45867 digexp 45953 |
Copyright terms: Public domain | W3C validator |