![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version |
Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
Ref | Expression |
---|---|
ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4537 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtrd 2775 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
5 | iffalse 4540 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
8 | 6, 7 | eqtrd 2775 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
9 | 4, 8 | pm2.61dan 813 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: somincom 6157 cantnfp1 9719 ccatsymb 14617 swrdccat3blem 14774 repswccat 14821 ccatco 14871 bitsinvp1 16483 xrsdsreval 21447 fvmptnn04if 22871 chfacfscmulgsum 22882 chfacfpmmulgsum 22886 oprpiece1res2 24997 phtpycc 25037 atantayl2 26996 ifeq3da 32567 fprodex01 32832 psgnfzto1stlem 33103 fzto1st1 33105 cycpm2tr 33122 elrgspnlem4 33235 elrspunsn 33437 mdetlap1 33787 madjusmdetlem1 33788 madjusmdetlem2 33789 ccatmulgnn0dir 34536 plymulx 34542 itgexpif 34600 repr0 34605 elmrsubrn 35505 matunitlindflem1 37603 sticksstones12 42140 redvmptabs 42369 readvrec 42371 frlmvscadiccat 42493 fsuppind 42577 fsuppssindlem1 42578 reabsifneg 43622 reabsifnpos 43623 reabsifpos 43624 reabsifnneg 43625 reabssgn 43626 sqrtcval 43631 mnringmulrcld 44224 fourierdlem101 46163 hoidmv1lelem2 46548 dfafv2 47082 linc0scn0 48269 m1modmmod 48371 digexp 48457 |
Copyright terms: Public domain | W3C validator |