| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4484 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4487 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: somincom 6087 cantnfp1 9596 ccatsymb 14508 swrdccat3blem 14664 repswccat 14711 ccatco 14761 bitsinvp1 16379 xrsdsreval 21337 fvmptnn04if 22753 chfacfscmulgsum 22764 chfacfpmmulgsum 22768 oprpiece1res2 24867 phtpycc 24907 atantayl2 26865 ifeq3da 32509 fprodex01 32789 psgnfzto1stlem 33061 fzto1st1 33063 cycpm2tr 33080 elrgspnlem4 33204 elrspunsn 33385 fldextrspunlsp 33660 mdetlap1 33812 madjusmdetlem1 33813 madjusmdetlem2 33814 ccatmulgnn0dir 34529 plymulx 34535 itgexpif 34593 repr0 34598 elmrsubrn 35512 matunitlindflem1 37615 sticksstones12 42151 redvmptabs 42353 readvrec 42355 frlmvscadiccat 42499 fsuppind 42583 fsuppssindlem1 42584 reabsifneg 43625 reabsifnpos 43626 reabsifpos 43627 reabsifnneg 43628 reabssgn 43629 sqrtcval 43634 mnringmulrcld 44221 fourierdlem101 46208 hoidmv1lelem2 46593 dfafv2 47136 m1modmmod 47362 linc0scn0 48428 digexp 48612 |
| Copyright terms: Public domain | W3C validator |