Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version |
Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
Ref | Expression |
---|---|
ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4462 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
5 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
8 | 6, 7 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
9 | 4, 8 | pm2.61dan 809 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: somincom 6028 cantnfp1 9369 ccatsymb 14215 swrdccat3blem 14380 repswccat 14427 ccatco 14476 bitsinvp1 16084 xrsdsreval 20555 fvmptnn04if 21906 chfacfscmulgsum 21917 chfacfpmmulgsum 21921 oprpiece1res2 24021 phtpycc 24060 atantayl2 25993 ifeq3da 30790 fprodex01 31041 psgnfzto1stlem 31269 fzto1st1 31271 cycpm2tr 31288 mdetlap1 31678 madjusmdetlem1 31679 madjusmdetlem2 31680 ccatmulgnn0dir 32421 plymulx 32427 itgexpif 32486 repr0 32491 elmrsubrn 33382 matunitlindflem1 35700 sticksstones12 40042 frlmvscadiccat 40163 fsuppind 40202 fsuppssindlem1 40203 reabsifneg 41129 reabsifnpos 41130 reabsifpos 41131 reabsifnneg 41132 reabssgn 41133 sqrtcval 41138 mnringmulrcld 41735 fourierdlem101 43638 hoidmv1lelem2 44020 dfafv2 44511 linc0scn0 45652 m1modmmod 45755 digexp 45841 |
Copyright terms: Public domain | W3C validator |