| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4476 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4479 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ifcif 4470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4471 |
| This theorem is referenced by: somincom 6076 cantnfp1 9566 ccatsymb 14485 swrdccat3blem 14641 repswccat 14688 ccatco 14737 bitsinvp1 16355 xrsdsreval 21343 fvmptnn04if 22759 chfacfscmulgsum 22770 chfacfpmmulgsum 22774 oprpiece1res2 24872 phtpycc 24912 atantayl2 26870 ifeq3da 32518 fprodex01 32800 psgnfzto1stlem 33061 fzto1st1 33063 cycpm2tr 33080 elrgspnlem4 33204 elrspunsn 33386 fldextrspunlsp 33679 mdetlap1 33831 madjusmdetlem1 33832 madjusmdetlem2 33833 ccatmulgnn0dir 34547 plymulx 34553 itgexpif 34611 repr0 34616 elmrsubrn 35556 matunitlindflem1 37656 sticksstones12 42191 redvmptabs 42393 readvrec 42395 frlmvscadiccat 42539 fsuppind 42623 fsuppssindlem1 42624 reabsifneg 43665 reabsifnpos 43666 reabsifpos 43667 reabsifnneg 43668 reabssgn 43669 sqrtcval 43674 mnringmulrcld 44261 fourierdlem101 46245 hoidmv1lelem2 46630 dfafv2 47163 m1modmmod 47389 linc0scn0 48455 digexp 48639 |
| Copyright terms: Public domain | W3C validator |