![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version |
Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
Ref | Expression |
---|---|
ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4496 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
4 | 2, 3 | eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
5 | iffalse 4499 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
8 | 6, 7 | eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ifcif 4490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4491 |
This theorem is referenced by: somincom 6092 cantnfp1 9625 ccatsymb 14479 swrdccat3blem 14636 repswccat 14683 ccatco 14733 bitsinvp1 16337 xrsdsreval 20865 fvmptnn04if 22221 chfacfscmulgsum 22232 chfacfpmmulgsum 22236 oprpiece1res2 24338 phtpycc 24377 atantayl2 26311 ifeq3da 31518 fprodex01 31777 psgnfzto1stlem 32005 fzto1st1 32007 cycpm2tr 32024 mdetlap1 32471 madjusmdetlem1 32472 madjusmdetlem2 32473 ccatmulgnn0dir 33218 plymulx 33224 itgexpif 33283 repr0 33288 elmrsubrn 34178 matunitlindflem1 36124 sticksstones12 40616 frlmvscadiccat 40730 fsuppind 40812 fsuppssindlem1 40813 reabsifneg 41996 reabsifnpos 41997 reabsifpos 41998 reabsifnneg 41999 reabssgn 42000 sqrtcval 42005 mnringmulrcld 42600 fourierdlem101 44538 hoidmv1lelem2 44923 dfafv2 45454 linc0scn0 46594 m1modmmod 46697 digexp 46783 |
Copyright terms: Public domain | W3C validator |