| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeqda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| ifeqda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeqda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ifeqda | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4494 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifeqda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 5 | iffalse 4497 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifeqda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) | |
| 8 | 6, 7 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| 9 | 4, 8 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: somincom 6107 cantnfp1 9634 ccatsymb 14547 swrdccat3blem 14704 repswccat 14751 ccatco 14801 bitsinvp1 16419 xrsdsreval 21328 fvmptnn04if 22736 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 oprpiece1res2 24850 phtpycc 24890 atantayl2 26848 ifeq3da 32475 fprodex01 32750 psgnfzto1stlem 33057 fzto1st1 33059 cycpm2tr 33076 elrgspnlem4 33196 elrspunsn 33400 fldextrspunlsp 33669 mdetlap1 33816 madjusmdetlem1 33817 madjusmdetlem2 33818 ccatmulgnn0dir 34533 plymulx 34539 itgexpif 34597 repr0 34602 elmrsubrn 35507 matunitlindflem1 37610 sticksstones12 42146 redvmptabs 42348 readvrec 42350 frlmvscadiccat 42494 fsuppind 42578 fsuppssindlem1 42579 reabsifneg 43621 reabsifnpos 43622 reabsifpos 43623 reabsifnneg 43624 reabssgn 43625 sqrtcval 43630 mnringmulrcld 44217 fourierdlem101 46205 hoidmv1lelem2 46590 dfafv2 47133 m1modmmod 47359 linc0scn0 48412 digexp 48596 |
| Copyright terms: Public domain | W3C validator |