Step | Hyp | Ref
| Expression |
1 | | circlemeth.n |
. . . . . . 7
β’ (π β π β
β0) |
2 | 1 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (0(,)1)) β π β
β0) |
3 | | ioossre 13381 |
. . . . . . . . 9
β’ (0(,)1)
β β |
4 | | ax-resscn 11163 |
. . . . . . . . 9
β’ β
β β |
5 | 3, 4 | sstri 3990 |
. . . . . . . 8
β’ (0(,)1)
β β |
6 | 5 | a1i 11 |
. . . . . . 7
β’ (π β (0(,)1) β
β) |
7 | 6 | sselda 3981 |
. . . . . 6
β’ ((π β§ π₯ β (0(,)1)) β π₯ β β) |
8 | | circlemeth.s |
. . . . . . . 8
β’ (π β π β β) |
9 | 8 | nnnn0d 12528 |
. . . . . . 7
β’ (π β π β
β0) |
10 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (0(,)1)) β π β
β0) |
11 | | circlemeth.l |
. . . . . . 7
β’ (π β πΏ:(0..^π)βΆ(β βm
β)) |
12 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (0(,)1)) β πΏ:(0..^π)βΆ(β βm
β)) |
13 | 2, 7, 10, 12 | vtsprod 33639 |
. . . . 5
β’ ((π β§ π₯ β (0(,)1)) β βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯))))) |
14 | 13 | oveq1d 7420 |
. . . 4
β’ ((π β§ π₯ β (0(,)1)) β (βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) Β· (expβ((i Β· (2
Β· Ο)) Β· (-π Β· π₯)))) = (Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯))))) |
15 | | fzfid 13934 |
. . . . 5
β’ ((π β§ π₯ β (0(,)1)) β (0...(π Β· π)) β Fin) |
16 | | ax-icn 11165 |
. . . . . . . . 9
β’ i β
β |
17 | | 2cn 12283 |
. . . . . . . . . 10
β’ 2 β
β |
18 | | picn 25960 |
. . . . . . . . . 10
β’ Ο
β β |
19 | 17, 18 | mulcli 11217 |
. . . . . . . . 9
β’ (2
Β· Ο) β β |
20 | 16, 19 | mulcli 11217 |
. . . . . . . 8
β’ (i
Β· (2 Β· Ο)) β β |
21 | 20 | a1i 11 |
. . . . . . 7
β’ ((π β§ π₯ β (0(,)1)) β (i Β· (2
Β· Ο)) β β) |
22 | 1 | nn0cnd 12530 |
. . . . . . . . . . 11
β’ (π β π β β) |
23 | 22 | negcld 11554 |
. . . . . . . . . 10
β’ (π β -π β β) |
24 | 23 | ralrimivw 3150 |
. . . . . . . . 9
β’ (π β βπ₯ β (0(,)1)-π β β) |
25 | 24 | r19.21bi 3248 |
. . . . . . . 8
β’ ((π β§ π₯ β (0(,)1)) β -π β β) |
26 | 25, 7 | mulcld 11230 |
. . . . . . 7
β’ ((π β§ π₯ β (0(,)1)) β (-π Β· π₯) β β) |
27 | 21, 26 | mulcld 11230 |
. . . . . 6
β’ ((π β§ π₯ β (0(,)1)) β ((i Β· (2
Β· Ο)) Β· (-π Β· π₯)) β β) |
28 | 27 | efcld 33591 |
. . . . 5
β’ ((π β§ π₯ β (0(,)1)) β (expβ((i
Β· (2 Β· Ο)) Β· (-π Β· π₯))) β β) |
29 | | fz1ssnn 13528 |
. . . . . . . 8
β’
(1...π) β
β |
30 | 29 | a1i 11 |
. . . . . . 7
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (1...π) β β) |
31 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π Β· π))) β π β (0...(π Β· π))) |
32 | 31 | elfzelzd 13498 |
. . . . . . . 8
β’ ((π β§ π β (0...(π Β· π))) β π β β€) |
33 | 32 | adantlr 713 |
. . . . . . 7
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β π β β€) |
34 | 10 | adantr 481 |
. . . . . . 7
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β π β
β0) |
35 | | fzfid 13934 |
. . . . . . 7
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (1...π) β Fin) |
36 | 30, 33, 34, 35 | reprfi 33616 |
. . . . . 6
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((1...π)(reprβπ)π) β Fin) |
37 | | fzofi 13935 |
. . . . . . . . 9
β’
(0..^π) β
Fin |
38 | 37 | a1i 11 |
. . . . . . . 8
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (0..^π) β Fin) |
39 | 1 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β
β0) |
40 | 9 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β
β0) |
41 | 32 | zcnd 12663 |
. . . . . . . . . . 11
β’ ((π β§ π β (0...(π Β· π))) β π β β) |
42 | 41 | ad2antrr 724 |
. . . . . . . . . 10
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β β) |
43 | 11 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β πΏ:(0..^π)βΆ(β βm
β)) |
44 | | simpr 485 |
. . . . . . . . . 10
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β (0..^π)) |
45 | 29 | a1i 11 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (1...π) β β) |
46 | 32 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β π β β€) |
47 | 9 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β π β
β0) |
48 | | simpr 485 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β π β ((1...π)(reprβπ)π)) |
49 | 45, 46, 47, 48 | reprf 33612 |
. . . . . . . . . . . 12
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β π:(0..^π)βΆ(1...π)) |
50 | 49 | ffvelcdmda 7083 |
. . . . . . . . . . 11
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β (πβπ) β (1...π)) |
51 | 29, 50 | sselid 3979 |
. . . . . . . . . 10
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β (πβπ) β β) |
52 | 39, 40, 42, 43, 44, 51 | breprexplemb 33631 |
. . . . . . . . 9
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β ((πΏβπ)β(πβπ)) β β) |
53 | 52 | adantl3r 748 |
. . . . . . . 8
β’
(((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β ((πΏβπ)β(πβπ)) β β) |
54 | 38, 53 | fprodcl 15892 |
. . . . . . 7
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
55 | 20 | a1i 11 |
. . . . . . . . . 10
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (i Β· (2 Β· Ο))
β β) |
56 | 33 | zcnd 12663 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β π β β) |
57 | 7 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β π₯ β β) |
58 | 56, 57 | mulcld 11230 |
. . . . . . . . . 10
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (π Β· π₯) β β) |
59 | 55, 58 | mulcld 11230 |
. . . . . . . . 9
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((i Β· (2 Β· Ο))
Β· (π Β· π₯)) β
β) |
60 | 59 | efcld 33591 |
. . . . . . . 8
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯))) β
β) |
61 | 60 | adantr 481 |
. . . . . . 7
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (expβ((i Β· (2 Β·
Ο)) Β· (π Β·
π₯))) β
β) |
62 | 54, 61 | mulcld 11230 |
. . . . . 6
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) β
β) |
63 | 36, 62 | fsumcl 15675 |
. . . . 5
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) β
β) |
64 | 15, 28, 63 | fsummulc1 15727 |
. . . 4
β’ ((π β§ π₯ β (0(,)1)) β (Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = Ξ£π β (0...(π Β· π))(Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯))))) |
65 | 28 | adantr 481 |
. . . . . . 7
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (expβ((i Β· (2
Β· Ο)) Β· (-π Β· π₯))) β β) |
66 | 36, 65, 62 | fsummulc1 15727 |
. . . . . 6
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = Ξ£π β ((1...π)(reprβπ)π)((βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯))))) |
67 | 65 | adantr 481 |
. . . . . . . . 9
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (expβ((i Β· (2 Β·
Ο)) Β· (-π
Β· π₯))) β
β) |
68 | 54, 61, 67 | mulassd 11233 |
. . . . . . . 8
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β ((βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· ((expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))))) |
69 | 27 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((i Β· (2 Β· Ο))
Β· (-π Β· π₯)) β
β) |
70 | | efadd 16033 |
. . . . . . . . . . . 12
β’ ((((i
Β· (2 Β· Ο)) Β· (π Β· π₯)) β β β§ ((i Β· (2
Β· Ο)) Β· (-π Β· π₯)) β β) β (expβ(((i
Β· (2 Β· Ο)) Β· (π Β· π₯)) + ((i Β· (2 Β· Ο)) Β·
(-π Β· π₯)))) = ((expβ((i Β·
(2 Β· Ο)) Β· (π Β· π₯))) Β· (expβ((i Β· (2
Β· Ο)) Β· (-π Β· π₯))))) |
71 | 59, 69, 70 | syl2anc 584 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (expβ(((i Β· (2
Β· Ο)) Β· (π
Β· π₯)) + ((i Β·
(2 Β· Ο)) Β· (-π Β· π₯)))) = ((expβ((i Β· (2 Β·
Ο)) Β· (π Β·
π₯))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯))))) |
72 | 26 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (-π Β· π₯) β β) |
73 | 55, 58, 72 | adddid 11234 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((i Β· (2 Β· Ο))
Β· ((π Β· π₯) + (-π Β· π₯))) = (((i Β· (2 Β· Ο))
Β· (π Β· π₯)) + ((i Β· (2 Β·
Ο)) Β· (-π
Β· π₯)))) |
74 | 25 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β -π β β) |
75 | 56, 74, 57 | adddird 11235 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((π + -π) Β· π₯) = ((π Β· π₯) + (-π Β· π₯))) |
76 | 22 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β π β β) |
77 | 56, 76 | negsubd 11573 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (π + -π) = (π β π)) |
78 | 77 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((π + -π) Β· π₯) = ((π β π) Β· π₯)) |
79 | 75, 78 | eqtr3d 2774 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((π Β· π₯) + (-π Β· π₯)) = ((π β π) Β· π₯)) |
80 | 79 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((i Β· (2 Β· Ο))
Β· ((π Β· π₯) + (-π Β· π₯))) = ((i Β· (2 Β· Ο))
Β· ((π β π) Β· π₯))) |
81 | 73, 80 | eqtr3d 2774 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (((i Β· (2 Β· Ο))
Β· (π Β· π₯)) + ((i Β· (2 Β·
Ο)) Β· (-π
Β· π₯))) = ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) |
82 | 81 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (expβ(((i Β· (2
Β· Ο)) Β· (π
Β· π₯)) + ((i Β·
(2 Β· Ο)) Β· (-π Β· π₯)))) = (expβ((i Β· (2 Β·
Ο)) Β· ((π β
π) Β· π₯)))) |
83 | 71, 82 | eqtr3d 2774 |
. . . . . . . . . 10
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = (expβ((i Β· (2 Β·
Ο)) Β· ((π β
π) Β· π₯)))) |
84 | 83 | oveq2d 7421 |
. . . . . . . . 9
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· ((expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯))))) = (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
85 | 84 | adantr 481 |
. . . . . . . 8
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· ((expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯))))) = (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
86 | 68, 85 | eqtrd 2772 |
. . . . . . 7
β’ ((((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β ((βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
87 | 86 | sumeq2dv 15645 |
. . . . . 6
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)((βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
88 | 66, 87 | eqtrd 2772 |
. . . . 5
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
89 | 88 | sumeq2dv 15645 |
. . . 4
β’ ((π β§ π₯ β (0(,)1)) β Ξ£π β (0...(π Β· π))(Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))) Β·
(expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
90 | 14, 64, 89 | 3eqtrd 2776 |
. . 3
β’ ((π β§ π₯ β (0(,)1)) β (βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) Β· (expβ((i Β· (2
Β· Ο)) Β· (-π Β· π₯)))) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) |
91 | 90 | itgeq2dv 25290 |
. 2
β’ (π β β«(0(,)1)(βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) Β· (expβ((i Β· (2
Β· Ο)) Β· (-π Β· π₯)))) dπ₯ = β«(0(,)1)Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯) |
92 | | ioombl 25073 |
. . . . 5
β’ (0(,)1)
β dom vol |
93 | 92 | a1i 11 |
. . . 4
β’ (π β (0(,)1) β dom
vol) |
94 | | fzfid 13934 |
. . . 4
β’ (π β (0...(π Β· π)) β Fin) |
95 | | sumex 15630 |
. . . . 5
β’
Ξ£π β
((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) β V |
96 | 95 | a1i 11 |
. . . 4
β’ ((π β§ (π₯ β (0(,)1) β§ π β (0...(π Β· π)))) β Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) β V) |
97 | 93 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0...(π Β· π))) β (0(,)1) β dom
vol) |
98 | 29 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β (1...π) β β) |
99 | 9 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β π β
β0) |
100 | | fzfid 13934 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β (1...π) β Fin) |
101 | 98, 32, 99, 100 | reprfi 33616 |
. . . . . 6
β’ ((π β§ π β (0...(π Β· π))) β ((1...π)(reprβπ)π) β Fin) |
102 | 37 | a1i 11 |
. . . . . . . . 9
β’ ((((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β§ π β ((1...π)(reprβπ)π)) β (0..^π) β Fin) |
103 | 52 | adantllr 717 |
. . . . . . . . 9
β’
(((((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β ((πΏβπ)β(πβπ)) β β) |
104 | 102, 103 | fprodcl 15892 |
. . . . . . . 8
β’ ((((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β§ π β ((1...π)(reprβπ)π)) β βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
105 | 56, 76 | subcld 11567 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β (π β π) β β) |
106 | 105, 57 | mulcld 11230 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((π β π) Β· π₯) β β) |
107 | 55, 106 | mulcld 11230 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (0(,)1)) β§ π β (0...(π Β· π))) β ((i Β· (2 Β· Ο))
Β· ((π β π) Β· π₯)) β β) |
108 | 107 | an32s 650 |
. . . . . . . . . 10
β’ (((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)) β β) |
109 | 108 | adantr 481 |
. . . . . . . . 9
β’ ((((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β§ π β ((1...π)(reprβπ)π)) β ((i Β· (2 Β· Ο))
Β· ((π β π) Β· π₯)) β β) |
110 | 109 | efcld 33591 |
. . . . . . . 8
β’ ((((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β§ π β ((1...π)(reprβπ)π)) β (expβ((i Β· (2 Β·
Ο)) Β· ((π β
π) Β· π₯))) β
β) |
111 | 104, 110 | mulcld 11230 |
. . . . . . 7
β’ ((((π β§ π β (0...(π Β· π))) β§ π₯ β (0(,)1)) β§ π β ((1...π)(reprβπ)π)) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) β β) |
112 | 111 | anasss 467 |
. . . . . 6
β’ (((π β§ π β (0...(π Β· π))) β§ (π₯ β (0(,)1) β§ π β ((1...π)(reprβπ)π))) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) β β) |
113 | 37 | a1i 11 |
. . . . . . . 8
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (0..^π) β Fin) |
114 | 113, 52 | fprodcl 15892 |
. . . . . . 7
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
115 | | fvex 6901 |
. . . . . . . 8
β’
(expβ((i Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) β V |
116 | 115 | a1i 11 |
. . . . . . 7
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π₯ β (0(,)1)) β (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) β V) |
117 | | ioossicc 13406 |
. . . . . . . . . 10
β’ (0(,)1)
β (0[,]1) |
118 | 117 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π Β· π))) β (0(,)1) β
(0[,]1)) |
119 | 92 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π Β· π))) β (0(,)1) β dom
vol) |
120 | 115 | a1i 11 |
. . . . . . . . 9
β’ (((π β§ π β (0...(π Β· π))) β§ π₯ β (0[,]1)) β (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) β V) |
121 | | 0red 11213 |
. . . . . . . . . 10
β’ ((π β§ π β (0...(π Β· π))) β 0 β
β) |
122 | | 1red 11211 |
. . . . . . . . . 10
β’ ((π β§ π β (0...(π Β· π))) β 1 β
β) |
123 | 22 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (0...(π Β· π))) β π β β) |
124 | 41, 123 | subcld 11567 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0...(π Β· π))) β (π β π) β β) |
125 | | unitsscn 13473 |
. . . . . . . . . . . . . 14
β’ (0[,]1)
β β |
126 | 125 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0...(π Β· π))) β (0[,]1) β
β) |
127 | | ssidd 4004 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0...(π Β· π))) β β β
β) |
128 | | cncfmptc 24419 |
. . . . . . . . . . . . 13
β’ (((π β π) β β β§ (0[,]1) β
β β§ β β β) β (π₯ β (0[,]1) β¦ (π β π)) β ((0[,]1)βcnββ)) |
129 | 124, 126,
127, 128 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0[,]1) β¦ (π β π)) β ((0[,]1)βcnββ)) |
130 | | cncfmptid 24420 |
. . . . . . . . . . . . 13
β’ (((0[,]1)
β β β§ β β β) β (π₯ β (0[,]1) β¦ π₯) β ((0[,]1)βcnββ)) |
131 | 126, 127,
130 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0[,]1) β¦ π₯) β ((0[,]1)βcnββ)) |
132 | 129, 131 | mulcncf 24954 |
. . . . . . . . . . 11
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0[,]1) β¦ ((π β π) Β· π₯)) β ((0[,]1)βcnββ)) |
133 | 132 | efmul2picn 33596 |
. . . . . . . . . 10
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0[,]1) β¦ (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯)))) β ((0[,]1)βcnββ)) |
134 | | cniccibl 25349 |
. . . . . . . . . 10
β’ ((0
β β β§ 1 β β β§ (π₯ β (0[,]1) β¦ (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯)))) β ((0[,]1)βcnββ)) β (π₯ β (0[,]1) β¦ (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯)))) β
πΏ1) |
135 | 121, 122,
133, 134 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0[,]1) β¦ (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯)))) β
πΏ1) |
136 | 118, 119,
120, 135 | iblss 25313 |
. . . . . . . 8
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0(,)1) β¦ (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯)))) β
πΏ1) |
137 | 136 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (π₯ β (0(,)1) β¦ (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯)))) β
πΏ1) |
138 | 114, 116,
137 | iblmulc2 25339 |
. . . . . 6
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (π₯ β (0(,)1) β¦ (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) β
πΏ1) |
139 | 97, 101, 112, 138 | itgfsum 25335 |
. . . . 5
β’ ((π β§ π β (0...(π Β· π))) β ((π₯ β (0(,)1) β¦ Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) β πΏ1 β§
β«(0(,)1)Ξ£π β
((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β ((1...π)(reprβπ)π)β«(0(,)1)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯)) |
140 | 139 | simpld 495 |
. . . 4
β’ ((π β§ π β (0...(π Β· π))) β (π₯ β (0(,)1) β¦ Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) β
πΏ1) |
141 | 93, 94, 96, 140 | itgfsum 25335 |
. . 3
β’ (π β ((π₯ β (0(,)1) β¦ Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯))))) β πΏ1 β§
β«(0(,)1)Ξ£π β
(0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β (0...(π Β· π))β«(0(,)1)Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯)) |
142 | 141 | simprd 496 |
. 2
β’ (π β β«(0(,)1)Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β (0...(π Β· π))β«(0(,)1)Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯) |
143 | | oveq2 7413 |
. . . . . . 7
β’
(if((π β π) = 0, 1, 0) = 1 β
(Ξ£π β
((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0)) = (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· 1)) |
144 | | oveq2 7413 |
. . . . . . 7
β’
(if((π β π) = 0, 1, 0) = 0 β
(Ξ£π β
((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0)) = (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· 0)) |
145 | 101, 114 | fsumcl 15675 |
. . . . . . . 8
β’ ((π β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
146 | 145 | mulridd 11227 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· 1) = Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
147 | 145 | mul01d 11409 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· 0) = 0) |
148 | 143, 144,
146, 147 | ifeq3da 31765 |
. . . . . 6
β’ ((π β§ π β (0...(π Β· π))) β if((π β π) = 0, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0) = (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0))) |
149 | | velsn 4643 |
. . . . . . . 8
β’ (π β {π} β π = π) |
150 | 41, 123 | subeq0ad 11577 |
. . . . . . . 8
β’ ((π β§ π β (0...(π Β· π))) β ((π β π) = 0 β π = π)) |
151 | 149, 150 | bitr4id 289 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β (π β {π} β (π β π) = 0)) |
152 | 151 | ifbid 4550 |
. . . . . 6
β’ ((π β§ π β (0...(π Β· π))) β if(π β {π}, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0) = if((π β π) = 0, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0)) |
153 | 1 | nn0zd 12580 |
. . . . . . . . . . . 12
β’ (π β π β β€) |
154 | 153 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β π β β€) |
155 | 46, 154 | zsubcld 12667 |
. . . . . . . . . 10
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (π β π) β β€) |
156 | | itgexpif 33606 |
. . . . . . . . . 10
β’ ((π β π) β β€ β
β«(0(,)1)(expβ((i Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯ = if((π β π) = 0, 1, 0)) |
157 | 155, 156 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β β«(0(,)1)(expβ((i Β·
(2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯ = if((π β π) = 0, 1, 0)) |
158 | 157 | oveq2d 7421 |
. . . . . . . 8
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0))) |
159 | 158 | sumeq2dv 15645 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0))) |
160 | | 1cnd 11205 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π Β· π))) β 1 β
β) |
161 | | 0cnd 11203 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π Β· π))) β 0 β
β) |
162 | 160, 161 | ifcld 4573 |
. . . . . . . 8
β’ ((π β§ π β (0...(π Β· π))) β if((π β π) = 0, 1, 0) β
β) |
163 | 101, 162,
114 | fsummulc1 15727 |
. . . . . . 7
β’ ((π β§ π β (0...(π Β· π))) β (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0)) = Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0))) |
164 | 159, 163 | eqtr4d 2775 |
. . . . . 6
β’ ((π β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = (Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) Β· if((π β π) = 0, 1, 0))) |
165 | 148, 152,
164 | 3eqtr4rd 2783 |
. . . . 5
β’ ((π β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = if(π β {π}, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0)) |
166 | 165 | sumeq2dv 15645 |
. . . 4
β’ (π β Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = Ξ£π β (0...(π Β· π))if(π β {π}, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0)) |
167 | | 0zd 12566 |
. . . . . . 7
β’ (π β 0 β
β€) |
168 | 9 | nn0zd 12580 |
. . . . . . . 8
β’ (π β π β β€) |
169 | 168, 153 | zmulcld 12668 |
. . . . . . 7
β’ (π β (π Β· π) β β€) |
170 | 1 | nn0ge0d 12531 |
. . . . . . 7
β’ (π β 0 β€ π) |
171 | | nnmulge 31950 |
. . . . . . . 8
β’ ((π β β β§ π β β0)
β π β€ (π Β· π)) |
172 | 8, 1, 171 | syl2anc 584 |
. . . . . . 7
β’ (π β π β€ (π Β· π)) |
173 | 167, 169,
153, 170, 172 | elfzd 13488 |
. . . . . 6
β’ (π β π β (0...(π Β· π))) |
174 | 173 | snssd 4811 |
. . . . 5
β’ (π β {π} β (0...(π Β· π))) |
175 | 174 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π β {π}) β π β (0...(π Β· π))) |
176 | 175, 145 | syldan 591 |
. . . . . 6
β’ ((π β§ π β {π}) β Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
177 | 176 | ralrimiva 3146 |
. . . . 5
β’ (π β βπ β {π}Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
178 | 94 | olcd 872 |
. . . . 5
β’ (π β ((0...(π Β· π)) β (β€β₯β0)
β¨ (0...(π Β· π)) β Fin)) |
179 | | sumss2 15668 |
. . . . 5
β’ ((({π} β (0...(π Β· π)) β§ βπ β {π}Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) β β) β§ ((0...(π Β· π)) β (β€β₯β0)
β¨ (0...(π Β· π)) β Fin)) β
Ξ£π β {π}Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = Ξ£π β (0...(π Β· π))if(π β {π}, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0)) |
180 | 174, 177,
178, 179 | syl21anc 836 |
. . . 4
β’ (π β Ξ£π β {π}Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = Ξ£π β (0...(π Β· π))if(π β {π}, Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)), 0)) |
181 | 29 | a1i 11 |
. . . . . . 7
β’ (π β (1...π) β β) |
182 | | fzfid 13934 |
. . . . . . 7
β’ (π β (1...π) β Fin) |
183 | 181, 153,
9, 182 | reprfi 33616 |
. . . . . 6
β’ (π β ((1...π)(reprβπ)π) β Fin) |
184 | 37 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β ((1...π)(reprβπ)π)) β (0..^π) β Fin) |
185 | 1 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β
β0) |
186 | 9 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β
β0) |
187 | 22 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β β) |
188 | 11 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β πΏ:(0..^π)βΆ(β βm
β)) |
189 | | simpr 485 |
. . . . . . . 8
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β π β (0..^π)) |
190 | 29 | a1i 11 |
. . . . . . . . . . 11
β’ ((π β§ π β ((1...π)(reprβπ)π)) β (1...π) β β) |
191 | 153 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β ((1...π)(reprβπ)π)) β π β β€) |
192 | 9 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β ((1...π)(reprβπ)π)) β π β
β0) |
193 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π β ((1...π)(reprβπ)π)) β π β ((1...π)(reprβπ)π)) |
194 | 190, 191,
192, 193 | reprf 33612 |
. . . . . . . . . 10
β’ ((π β§ π β ((1...π)(reprβπ)π)) β π:(0..^π)βΆ(1...π)) |
195 | 194 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β (πβπ) β (1...π)) |
196 | 29, 195 | sselid 3979 |
. . . . . . . 8
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β (πβπ) β β) |
197 | 185, 186,
187, 188, 189, 196 | breprexplemb 33631 |
. . . . . . 7
β’ (((π β§ π β ((1...π)(reprβπ)π)) β§ π β (0..^π)) β ((πΏβπ)β(πβπ)) β β) |
198 | 184, 197 | fprodcl 15892 |
. . . . . 6
β’ ((π β§ π β ((1...π)(reprβπ)π)) β βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
199 | 183, 198 | fsumcl 15675 |
. . . . 5
β’ (π β Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) β β) |
200 | | oveq2 7413 |
. . . . . . 7
β’ (π = π β ((1...π)(reprβπ)π) = ((1...π)(reprβπ)π)) |
201 | 200 | sumeq1d 15643 |
. . . . . 6
β’ (π = π β Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
202 | 201 | sumsn 15688 |
. . . . 5
β’ ((π β β0
β§ Ξ£π β
((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) β β) β Ξ£π β {π}Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
203 | 1, 199, 202 | syl2anc 584 |
. . . 4
β’ (π β Ξ£π β {π}Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
204 | 166, 180,
203 | 3eqtr2d 2778 |
. . 3
β’ (π β Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
205 | 139 | simprd 496 |
. . . . 5
β’ ((π β§ π β (0...(π Β· π))) β β«(0(,)1)Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β ((1...π)(reprβπ)π)β«(0(,)1)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯) |
206 | 110 | an32s 650 |
. . . . . . 7
β’ ((((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β§ π₯ β (0(,)1)) β (expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) β β) |
207 | 114, 206,
137 | itgmulc2 25342 |
. . . . . 6
β’ (((π β§ π β (0...(π Β· π))) β§ π β ((1...π)(reprβπ)π)) β (βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = β«(0(,)1)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯) |
208 | 207 | sumeq2dv 15645 |
. . . . 5
β’ ((π β§ π β (0...(π Β· π))) β Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯) = Ξ£π β ((1...π)(reprβπ)π)β«(0(,)1)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯) |
209 | 205, 208 | eqtr4d 2775 |
. . . 4
β’ ((π β§ π β (0...(π Β· π))) β β«(0(,)1)Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯)) |
210 | 209 | sumeq2dv 15645 |
. . 3
β’ (π β Ξ£π β (0...(π Β· π))β«(0(,)1)Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· β«(0(,)1)(expβ((i
Β· (2 Β· Ο)) Β· ((π β π) Β· π₯))) dπ₯)) |
211 | 1, 9 | reprfz1 33624 |
. . . 4
β’ (π β (β(reprβπ)π) = ((1...π)(reprβπ)π)) |
212 | 211 | sumeq1d 15643 |
. . 3
β’ (π β Ξ£π β (β(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = Ξ£π β ((1...π)(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
213 | 204, 210,
212 | 3eqtr4d 2782 |
. 2
β’ (π β Ξ£π β (0...(π Β· π))β«(0(,)1)Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2
Β· Ο)) Β· ((π β π) Β· π₯)))) dπ₯ = Ξ£π β (β(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ))) |
214 | 91, 142, 213 | 3eqtrrd 2777 |
1
β’ (π β Ξ£π β (β(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = β«(0(,)1)(βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) Β· (expβ((i Β· (2
Β· Ο)) Β· (-π Β· π₯)))) dπ₯) |