Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemeth Structured version   Visualization version   GIF version

Theorem circlemeth 34664
Description: The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemeth.n (𝜑𝑁 ∈ ℕ0)
circlemeth.s (𝜑𝑆 ∈ ℕ)
circlemeth.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
circlemeth (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝐿,𝑎,𝑐,𝑥   𝑁,𝑎,𝑐,𝑥   𝑆,𝑎,𝑐,𝑥   𝜑,𝑎,𝑐,𝑥

Proof of Theorem circlemeth
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 circlemeth.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
21adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
3 ioossre 13317 . . . . . . . . 9 (0(,)1) ⊆ ℝ
4 ax-resscn 11073 . . . . . . . . 9 ℝ ⊆ ℂ
53, 4sstri 3941 . . . . . . . 8 (0(,)1) ⊆ ℂ
65a1i 11 . . . . . . 7 (𝜑 → (0(,)1) ⊆ ℂ)
76sselda 3931 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
8 circlemeth.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
98nnnn0d 12452 . . . . . . 7 (𝜑𝑆 ∈ ℕ0)
109adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
11 circlemeth.l . . . . . . 7 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
1211adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
132, 7, 10, 12vtsprod 34663 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))))
1413oveq1d 7370 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
15 fzfid 13890 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (0...(𝑆 · 𝑁)) ∈ Fin)
16 ax-icn 11075 . . . . . . . . 9 i ∈ ℂ
17 2cn 12210 . . . . . . . . . 10 2 ∈ ℂ
18 picn 26404 . . . . . . . . . 10 π ∈ ℂ
1917, 18mulcli 11129 . . . . . . . . 9 (2 · π) ∈ ℂ
2016, 19mulcli 11129 . . . . . . . 8 (i · (2 · π)) ∈ ℂ
2120a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (i · (2 · π)) ∈ ℂ)
221nn0cnd 12454 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
2322negcld 11469 . . . . . . . . . 10 (𝜑 → -𝑁 ∈ ℂ)
2423ralrimivw 3130 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0(,)1)-𝑁 ∈ ℂ)
2524r19.21bi 3226 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → -𝑁 ∈ ℂ)
2625, 7mulcld 11142 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (-𝑁 · 𝑥) ∈ ℂ)
2721, 26mulcld 11142 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ)
2827efcld 16000 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
29 fz1ssnn 13465 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3029a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
31 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3231elfzelzd 13435 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
3332adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
3410adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
35 fzfid 13890 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
3630, 33, 34, 35reprfi 34640 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
37 fzofi 13891 . . . . . . . . 9 (0..^𝑆) ∈ Fin
3837a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
391ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
409ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈ ℕ0)
4132zcnd 12588 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ)
4241ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑚 ∈ ℂ)
4311ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
44 simpr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
4529a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ)
4632adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
479ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈ ℕ0)
48 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))
4945, 46, 47, 48reprf 34636 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
5049ffvelcdmda 7026 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
5129, 50sselid 3929 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
5239, 40, 42, 43, 44, 51breprexplemb 34655 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5352adantl3r 750 . . . . . . . 8 (((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5438, 53fprodcl 15869 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5520a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (i · (2 · π)) ∈ ℂ)
5633zcnd 12588 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ)
577adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑥 ∈ ℂ)
5856, 57mulcld 11142 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 · 𝑥) ∈ ℂ)
5955, 58mulcld 11142 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ)
6059efcld 16000 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2 · π)) · (𝑚 · 𝑥))) ∈ ℂ)
6160adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑥))) ∈ ℂ)
6254, 61mulcld 11142 . . . . . 6 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) ∈ ℂ)
6336, 62fsumcl 15650 . . . . 5 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) ∈ ℂ)
6415, 28, 63fsummulc1 15702 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
6528adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
6636, 65, 62fsummulc1 15702 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
6765adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
6854, 61, 67mulassd 11145 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))))
6927adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ)
70 efadd 16011 . . . . . . . . . . . 12 ((((i · (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ ∧ ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7159, 69, 70syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7226adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (-𝑁 · 𝑥) ∈ ℂ)
7355, 58, 72adddid 11146 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = (((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥))))
7425adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → -𝑁 ∈ ℂ)
7556, 74, 57adddird 11147 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 · 𝑥) + (-𝑁 · 𝑥)))
7622ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ)
7756, 76negsubd 11488 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 + -𝑁) = (𝑚𝑁))
7877oveq1d 7370 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚𝑁) · 𝑥))
7975, 78eqtr3d 2770 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 · 𝑥) + (-𝑁 · 𝑥)) = ((𝑚𝑁) · 𝑥))
8079oveq2d 7371 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))
8173, 80eqtr3d 2770 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥))) = ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))
8281fveq2d 6835 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))
8371, 82eqtr3d 2770 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))
8483oveq2d 7371 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8584adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8668, 85eqtrd 2768 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8786sumeq2dv 15619 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8866, 87eqtrd 2768 . . . . 5 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8988sumeq2dv 15619 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9014, 64, 893eqtrd 2772 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9190itgeq2dv 25720 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
92 ioombl 25503 . . . . 5 (0(,)1) ∈ dom vol
9392a1i 11 . . . 4 (𝜑 → (0(,)1) ∈ dom vol)
94 fzfid 13890 . . . 4 (𝜑 → (0...(𝑆 · 𝑁)) ∈ Fin)
95 sumex 15605 . . . . 5 Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ V
9695a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0(,)1) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁)))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ V)
9793adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom vol)
9829a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
999adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
100 fzfid 13890 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
10198, 32, 99, 100reprfi 34640 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
10237a1i 11 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
10352adantllr 719 . . . . . . . . 9 (((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
104102, 103fprodcl 15869 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
10556, 76subcld 11482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚𝑁) ∈ ℂ)
106105, 57mulcld 11142 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚𝑁) · 𝑥) ∈ ℂ)
10755, 106mulcld 11142 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
108107an32s 652 . . . . . . . . . 10 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
109108adantr 480 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
110109efcld 16000 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ ℂ)
111104, 110mulcld 11142 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ℂ)
112111anasss 466 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ (𝑥 ∈ (0(,)1) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ℂ)
11337a1i 11 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
114113, 52fprodcl 15869 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
115 fvex 6844 . . . . . . . 8 (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V
116115a1i 11 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V)
117 ioossicc 13343 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
118117a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ⊆ (0[,]1))
11992a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom vol)
120115a1i 11 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0[,]1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V)
121 0red 11125 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈ ℝ)
122 1red 11123 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈ ℝ)
12322adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ)
12441, 123subcld 11482 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚𝑁) ∈ ℂ)
125 unitsscn 13410 . . . . . . . . . . . . . 14 (0[,]1) ⊆ ℂ
126125a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0[,]1) ⊆ ℂ)
127 ssidd 3955 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ℂ ⊆ ℂ)
128 cncfmptc 24842 . . . . . . . . . . . . 13 (((𝑚𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ (𝑚𝑁)) ∈ ((0[,]1)–cn→ℂ))
129124, 126, 127, 128syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (𝑚𝑁)) ∈ ((0[,]1)–cn→ℂ))
130 cncfmptid 24843 . . . . . . . . . . . . 13 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ))
131126, 127, 130syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ))
132129, 131mulcncf 25383 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ ((𝑚𝑁) · 𝑥)) ∈ ((0[,]1)–cn→ℂ))
133132efmul2picn 34620 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ))
134 cniccibl 25779 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
135121, 122, 133, 134syl3anc 1373 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
136118, 119, 120, 135iblss 25743 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
137136adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
138114, 116, 137iblmulc2 25769 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1)
13997, 101, 112, 138itgfsum 25765 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1 ∧ ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥))
140139simpld 494 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1)
14193, 94, 96, 140itgfsum 25765 . . 3 (𝜑 → ((𝑥 ∈ (0(,)1) ↦ Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1 ∧ ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥))
142141simprd 495 . 2 (𝜑 → ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
143 oveq2 7363 . . . . . . 7 (if((𝑚𝑁) = 0, 1, 0) = 1 → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 1))
144 oveq2 7363 . . . . . . 7 (if((𝑚𝑁) = 0, 1, 0) = 0 → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 0))
145101, 114fsumcl 15650 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
146145mulridd 11139 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 1) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
147145mul01d 11322 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 0) = 0)
148143, 144, 146, 147ifeq3da 32537 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
149 velsn 4593 . . . . . . . 8 (𝑚 ∈ {𝑁} ↔ 𝑚 = 𝑁)
15041, 123subeq0ad 11492 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚𝑁) = 0 ↔ 𝑚 = 𝑁))
151149, 150bitr4id 290 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 ∈ {𝑁} ↔ (𝑚𝑁) = 0))
152151ifbid 4500 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0) = if((𝑚𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
1531nn0zd 12504 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
154153ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑁 ∈ ℤ)
15546, 154zsubcld 12592 . . . . . . . . . 10 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚𝑁) ∈ ℤ)
156 itgexpif 34630 . . . . . . . . . 10 ((𝑚𝑁) ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥 = if((𝑚𝑁) = 0, 1, 0))
157155, 156syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥 = if((𝑚𝑁) = 0, 1, 0))
158157oveq2d 7371 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
159158sumeq2dv 15619 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
160 1cnd 11117 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈ ℂ)
161 0cnd 11115 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈ ℂ)
162160, 161ifcld 4523 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚𝑁) = 0, 1, 0) ∈ ℂ)
163101, 162, 114fsummulc1 15702 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
164159, 163eqtr4d 2771 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
165148, 152, 1643eqtr4rd 2779 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
166165sumeq2dv 15619 . . . 4 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
167 0zd 12490 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
1689nn0zd 12504 . . . . . . . 8 (𝜑𝑆 ∈ ℤ)
169168, 153zmulcld 12593 . . . . . . 7 (𝜑 → (𝑆 · 𝑁) ∈ ℤ)
1701nn0ge0d 12455 . . . . . . 7 (𝜑 → 0 ≤ 𝑁)
171 nnmulge 32733 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑆 · 𝑁))
1728, 1, 171syl2anc 584 . . . . . . 7 (𝜑𝑁 ≤ (𝑆 · 𝑁))
173167, 169, 153, 170, 172elfzd 13425 . . . . . 6 (𝜑𝑁 ∈ (0...(𝑆 · 𝑁)))
174173snssd 4762 . . . . 5 (𝜑 → {𝑁} ⊆ (0...(𝑆 · 𝑁)))
175174sselda 3931 . . . . . . 7 ((𝜑𝑚 ∈ {𝑁}) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
176175, 145syldan 591 . . . . . 6 ((𝜑𝑚 ∈ {𝑁}) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
177176ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
17894olcd 874 . . . . 5 (𝜑 → ((0...(𝑆 · 𝑁)) ⊆ (ℤ‘0) ∨ (0...(𝑆 · 𝑁)) ∈ Fin))
179 sumss2 15643 . . . . 5 ((({𝑁} ⊆ (0...(𝑆 · 𝑁)) ∧ ∀𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ) ∧ ((0...(𝑆 · 𝑁)) ⊆ (ℤ‘0) ∨ (0...(𝑆 · 𝑁)) ∈ Fin)) → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
180174, 177, 178, 179syl21anc 837 . . . 4 (𝜑 → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
18129a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) ⊆ ℕ)
182 fzfid 13890 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
183181, 153, 9, 182reprfi 34640 . . . . . 6 (𝜑 → ((1...𝑁)(repr‘𝑆)𝑁) ∈ Fin)
18437a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (0..^𝑆) ∈ Fin)
1851ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1869ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈ ℕ0)
18722ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℂ)
18811ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
189 simpr 484 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
19029a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (1...𝑁) ⊆ ℕ)
191153adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑁 ∈ ℤ)
1929adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑆 ∈ ℕ0)
193 simpr 484 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁))
194190, 191, 192, 193reprf 34636 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
195194ffvelcdmda 7026 . . . . . . . . 9 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
19629, 195sselid 3929 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
197185, 186, 187, 188, 189, 196breprexplemb 34655 . . . . . . 7 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
198184, 197fprodcl 15869 . . . . . 6 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
199183, 198fsumcl 15650 . . . . 5 (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
200 oveq2 7363 . . . . . . 7 (𝑚 = 𝑁 → ((1...𝑁)(repr‘𝑆)𝑚) = ((1...𝑁)(repr‘𝑆)𝑁))
201200sumeq1d 15617 . . . . . 6 (𝑚 = 𝑁 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
202201sumsn 15663 . . . . 5 ((𝑁 ∈ ℕ0 ∧ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ) → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
2031, 199, 202syl2anc 584 . . . 4 (𝜑 → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
204166, 180, 2033eqtr2d 2774 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
205139simprd 495 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
206110an32s 652 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ ℂ)
207114, 206, 137itgmulc2 25772 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
208207sumeq2dv 15619 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
209205, 208eqtr4d 2771 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥))
210209sumeq2dv 15619 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥))
2111, 9reprfz1 34648 . . . 4 (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁))
212211sumeq1d 15617 . . 3 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
213204, 210, 2123eqtr4d 2778 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
21491, 142, 2133eqtrrd 2773 1 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  wss 3899  ifcif 4476  {csn 4577   class class class wbr 5095  cmpt 5176  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  Fincfn 8878  cc 11014  cr 11015  0cc0 11016  1c1 11017  ici 11018   + caddc 11019   · cmul 11021  cle 11157  cmin 11354  -cneg 11355  cn 12135  2c2 12190  0cn0 12391  cz 12478  cuz 12742  (,)cioo 13255  [,]cicc 13258  ...cfz 13417  ..^cfzo 13564  Σcsu 15603  cprod 15820  expce 15978  πcpi 15983  cnccncf 24806  volcvol 25401  𝐿1cibl 25555  citg 25556  reprcrepr 34632  vtscvts 34659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-prod 15821  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-ovol 25402  df-vol 25403  df-mbf 25557  df-itg1 25558  df-itg2 25559  df-ibl 25560  df-itg 25561  df-0p 25608  df-limc 25804  df-dv 25805  df-repr 34633  df-vts 34660
This theorem is referenced by:  circlemethnat  34665  circlevma  34666  circlemethhgt  34667
  Copyright terms: Public domain W3C validator