Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemeth Structured version   Visualization version   GIF version

Theorem circlemeth 34643
Description: The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemeth.n (𝜑𝑁 ∈ ℕ0)
circlemeth.s (𝜑𝑆 ∈ ℕ)
circlemeth.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
circlemeth (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝐿,𝑎,𝑐,𝑥   𝑁,𝑎,𝑐,𝑥   𝑆,𝑎,𝑐,𝑥   𝜑,𝑎,𝑐,𝑥

Proof of Theorem circlemeth
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 circlemeth.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
21adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
3 ioossre 13299 . . . . . . . . 9 (0(,)1) ⊆ ℝ
4 ax-resscn 11055 . . . . . . . . 9 ℝ ⊆ ℂ
53, 4sstri 3942 . . . . . . . 8 (0(,)1) ⊆ ℂ
65a1i 11 . . . . . . 7 (𝜑 → (0(,)1) ⊆ ℂ)
76sselda 3932 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
8 circlemeth.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
98nnnn0d 12434 . . . . . . 7 (𝜑𝑆 ∈ ℕ0)
109adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
11 circlemeth.l . . . . . . 7 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
1211adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
132, 7, 10, 12vtsprod 34642 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))))
1413oveq1d 7356 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
15 fzfid 13872 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (0...(𝑆 · 𝑁)) ∈ Fin)
16 ax-icn 11057 . . . . . . . . 9 i ∈ ℂ
17 2cn 12192 . . . . . . . . . 10 2 ∈ ℂ
18 picn 26387 . . . . . . . . . 10 π ∈ ℂ
1917, 18mulcli 11111 . . . . . . . . 9 (2 · π) ∈ ℂ
2016, 19mulcli 11111 . . . . . . . 8 (i · (2 · π)) ∈ ℂ
2120a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (i · (2 · π)) ∈ ℂ)
221nn0cnd 12436 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
2322negcld 11451 . . . . . . . . . 10 (𝜑 → -𝑁 ∈ ℂ)
2423ralrimivw 3126 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0(,)1)-𝑁 ∈ ℂ)
2524r19.21bi 3222 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → -𝑁 ∈ ℂ)
2625, 7mulcld 11124 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (-𝑁 · 𝑥) ∈ ℂ)
2721, 26mulcld 11124 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ)
2827efcld 15982 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
29 fz1ssnn 13447 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3029a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
31 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3231elfzelzd 13417 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
3332adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
3410adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
35 fzfid 13872 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
3630, 33, 34, 35reprfi 34619 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
37 fzofi 13873 . . . . . . . . 9 (0..^𝑆) ∈ Fin
3837a1i 11 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
391ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
409ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈ ℕ0)
4132zcnd 12570 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ)
4241ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑚 ∈ ℂ)
4311ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
44 simpr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
4529a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ)
4632adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
479ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈ ℕ0)
48 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))
4945, 46, 47, 48reprf 34615 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
5049ffvelcdmda 7012 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
5129, 50sselid 3930 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
5239, 40, 42, 43, 44, 51breprexplemb 34634 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5352adantl3r 750 . . . . . . . 8 (((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5438, 53fprodcl 15851 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
5520a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (i · (2 · π)) ∈ ℂ)
5633zcnd 12570 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ)
577adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑥 ∈ ℂ)
5856, 57mulcld 11124 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 · 𝑥) ∈ ℂ)
5955, 58mulcld 11124 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ)
6059efcld 15982 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2 · π)) · (𝑚 · 𝑥))) ∈ ℂ)
6160adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑥))) ∈ ℂ)
6254, 61mulcld 11124 . . . . . 6 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) ∈ ℂ)
6336, 62fsumcl 15632 . . . . 5 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) ∈ ℂ)
6415, 28, 63fsummulc1 15684 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
6528adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
6636, 65, 62fsummulc1 15684 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
6765adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ)
6854, 61, 67mulassd 11127 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))))
6927adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ)
70 efadd 15993 . . . . . . . . . . . 12 ((((i · (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ ∧ ((i · (2 · π)) · (-𝑁 · 𝑥)) ∈ ℂ) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7159, 69, 70syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7226adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (-𝑁 · 𝑥) ∈ ℂ)
7355, 58, 72adddid 11128 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = (((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥))))
7425adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → -𝑁 ∈ ℂ)
7556, 74, 57adddird 11129 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 · 𝑥) + (-𝑁 · 𝑥)))
7622ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ)
7756, 76negsubd 11470 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 + -𝑁) = (𝑚𝑁))
7877oveq1d 7356 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚𝑁) · 𝑥))
7975, 78eqtr3d 2767 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 · 𝑥) + (-𝑁 · 𝑥)) = ((𝑚𝑁) · 𝑥))
8079oveq2d 7357 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))
8173, 80eqtr3d 2767 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥))) = ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))
8281fveq2d 6821 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))
8371, 82eqtr3d 2767 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))
8483oveq2d 7357 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8584adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8668, 85eqtrd 2765 . . . . . . 7 ((((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8786sumeq2dv 15601 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8866, 87eqtrd 2765 . . . . 5 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
8988sumeq2dv 15601 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑥)))) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9014, 64, 893eqtrd 2769 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))))
9190itgeq2dv 25703 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
92 ioombl 25486 . . . . 5 (0(,)1) ∈ dom vol
9392a1i 11 . . . 4 (𝜑 → (0(,)1) ∈ dom vol)
94 fzfid 13872 . . . 4 (𝜑 → (0...(𝑆 · 𝑁)) ∈ Fin)
95 sumex 15587 . . . . 5 Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ V
9695a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0(,)1) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁)))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ V)
9793adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom vol)
9829a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
999adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
100 fzfid 13872 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
10198, 32, 99, 100reprfi 34619 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
10237a1i 11 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
10352adantllr 719 . . . . . . . . 9 (((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
104102, 103fprodcl 15851 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
10556, 76subcld 11464 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚𝑁) ∈ ℂ)
106105, 57mulcld 11124 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚𝑁) · 𝑥) ∈ ℂ)
10755, 106mulcld 11124 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
108107an32s 652 . . . . . . . . . 10 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
109108adantr 480 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · ((𝑚𝑁) · 𝑥)) ∈ ℂ)
110109efcld 15982 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ ℂ)
111104, 110mulcld 11124 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ℂ)
112111anasss 466 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ (𝑥 ∈ (0(,)1) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ℂ)
11337a1i 11 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
114113, 52fprodcl 15851 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
115 fvex 6830 . . . . . . . 8 (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V
116115a1i 11 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V)
117 ioossicc 13325 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
118117a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ⊆ (0[,]1))
11992a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom vol)
120115a1i 11 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0[,]1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ V)
121 0red 11107 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈ ℝ)
122 1red 11105 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈ ℝ)
12322adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ)
12441, 123subcld 11464 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚𝑁) ∈ ℂ)
125 unitsscn 13392 . . . . . . . . . . . . . 14 (0[,]1) ⊆ ℂ
126125a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (0[,]1) ⊆ ℂ)
127 ssidd 3956 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ℂ ⊆ ℂ)
128 cncfmptc 24825 . . . . . . . . . . . . 13 (((𝑚𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ (𝑚𝑁)) ∈ ((0[,]1)–cn→ℂ))
129124, 126, 127, 128syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (𝑚𝑁)) ∈ ((0[,]1)–cn→ℂ))
130 cncfmptid 24826 . . . . . . . . . . . . 13 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ))
131126, 127, 130syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ))
132129, 131mulcncf 25366 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ ((𝑚𝑁) · 𝑥)) ∈ ((0[,]1)–cn→ℂ))
133132efmul2picn 34599 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ))
134 cniccibl 25762 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
135121, 122, 133, 134syl3anc 1373 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
136118, 119, 120, 135iblss 25726 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
137136adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) ∈ 𝐿1)
138114, 116, 137iblmulc2 25752 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1)
13997, 101, 112, 138itgfsum 25748 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1 ∧ ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥))
140139simpld 494 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1)
14193, 94, 96, 140itgfsum 25748 . . 3 (𝜑 → ((𝑥 ∈ (0(,)1) ↦ Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))))) ∈ 𝐿1 ∧ ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥))
142141simprd 495 . 2 (𝜑 → ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
143 oveq2 7349 . . . . . . 7 (if((𝑚𝑁) = 0, 1, 0) = 1 → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 1))
144 oveq2 7349 . . . . . . 7 (if((𝑚𝑁) = 0, 1, 0) = 0 → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 0))
145101, 114fsumcl 15632 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
146145mulridd 11121 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 1) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
147145mul01d 11304 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · 0) = 0)
148143, 144, 146, 147ifeq3da 32516 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
149 velsn 4590 . . . . . . . 8 (𝑚 ∈ {𝑁} ↔ 𝑚 = 𝑁)
15041, 123subeq0ad 11474 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚𝑁) = 0 ↔ 𝑚 = 𝑁))
151149, 150bitr4id 290 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 ∈ {𝑁} ↔ (𝑚𝑁) = 0))
152151ifbid 4497 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0) = if((𝑚𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
1531nn0zd 12486 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
154153ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑁 ∈ ℤ)
15546, 154zsubcld 12574 . . . . . . . . . 10 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚𝑁) ∈ ℤ)
156 itgexpif 34609 . . . . . . . . . 10 ((𝑚𝑁) ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥 = if((𝑚𝑁) = 0, 1, 0))
157155, 156syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥 = if((𝑚𝑁) = 0, 1, 0))
158157oveq2d 7357 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
159158sumeq2dv 15601 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
160 1cnd 11099 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈ ℂ)
161 0cnd 11097 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈ ℂ)
162160, 161ifcld 4520 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚𝑁) = 0, 1, 0) ∈ ℂ)
163101, 162, 114fsummulc1 15684 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
164159, 163eqtr4d 2768 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · if((𝑚𝑁) = 0, 1, 0)))
165148, 152, 1643eqtr4rd 2776 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
166165sumeq2dv 15601 . . . 4 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
167 0zd 12472 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
1689nn0zd 12486 . . . . . . . 8 (𝜑𝑆 ∈ ℤ)
169168, 153zmulcld 12575 . . . . . . 7 (𝜑 → (𝑆 · 𝑁) ∈ ℤ)
1701nn0ge0d 12437 . . . . . . 7 (𝜑 → 0 ≤ 𝑁)
171 nnmulge 32712 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑆 · 𝑁))
1728, 1, 171syl2anc 584 . . . . . . 7 (𝜑𝑁 ≤ (𝑆 · 𝑁))
173167, 169, 153, 170, 172elfzd 13407 . . . . . 6 (𝜑𝑁 ∈ (0...(𝑆 · 𝑁)))
174173snssd 4759 . . . . 5 (𝜑 → {𝑁} ⊆ (0...(𝑆 · 𝑁)))
175174sselda 3932 . . . . . . 7 ((𝜑𝑚 ∈ {𝑁}) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
176175, 145syldan 591 . . . . . 6 ((𝜑𝑚 ∈ {𝑁}) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
177176ralrimiva 3122 . . . . 5 (𝜑 → ∀𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
17894olcd 874 . . . . 5 (𝜑 → ((0...(𝑆 · 𝑁)) ⊆ (ℤ‘0) ∨ (0...(𝑆 · 𝑁)) ∈ Fin))
179 sumss2 15625 . . . . 5 ((({𝑁} ⊆ (0...(𝑆 · 𝑁)) ∧ ∀𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ) ∧ ((0...(𝑆 · 𝑁)) ⊆ (ℤ‘0) ∨ (0...(𝑆 · 𝑁)) ∈ Fin)) → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
180174, 177, 178, 179syl21anc 837 . . . 4 (𝜑 → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)), 0))
18129a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) ⊆ ℕ)
182 fzfid 13872 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
183181, 153, 9, 182reprfi 34619 . . . . . 6 (𝜑 → ((1...𝑁)(repr‘𝑆)𝑁) ∈ Fin)
18437a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (0..^𝑆) ∈ Fin)
1851ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1869ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈ ℕ0)
18722ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℂ)
18811ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
189 simpr 484 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
19029a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (1...𝑁) ⊆ ℕ)
191153adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑁 ∈ ℤ)
1929adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑆 ∈ ℕ0)
193 simpr 484 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁))
194190, 191, 192, 193reprf 34615 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
195194ffvelcdmda 7012 . . . . . . . . 9 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
19629, 195sselid 3930 . . . . . . . 8 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
197185, 186, 187, 188, 189, 196breprexplemb 34634 . . . . . . 7 (((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
198184, 197fprodcl 15851 . . . . . 6 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
199183, 198fsumcl 15632 . . . . 5 (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ)
200 oveq2 7349 . . . . . . 7 (𝑚 = 𝑁 → ((1...𝑁)(repr‘𝑆)𝑚) = ((1...𝑁)(repr‘𝑆)𝑁))
201200sumeq1d 15599 . . . . . 6 (𝑚 = 𝑁 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
202201sumsn 15645 . . . . 5 ((𝑁 ∈ ℕ0 ∧ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) ∈ ℂ) → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
2031, 199, 202syl2anc 584 . . . 4 (𝜑 → Σ𝑚 ∈ {𝑁𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
204166, 180, 2033eqtr2d 2771 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
205139simprd 495 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
206110an32s 652 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) ∈ ℂ)
207114, 206, 137itgmulc2 25755 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
208207sumeq2dv 15601 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥)
209205, 208eqtr4d 2768 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥))
210209sumeq2dv 15601 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥))) d𝑥))
2111, 9reprfz1 34627 . . . 4 (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁))
212211sumeq1d 15599 . . 3 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
213204, 210, 2123eqtr4d 2775 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · ((𝑚𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
21491, 142, 2133eqtrrd 2770 1 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900  ifcif 4473  {csn 4574   class class class wbr 5089  cmpt 5170  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  m cmap 8745  Fincfn 8864  cc 10996  cr 10997  0cc0 10998  1c1 10999  ici 11000   + caddc 11001   · cmul 11003  cle 11139  cmin 11336  -cneg 11337  cn 12117  2c2 12172  0cn0 12373  cz 12460  cuz 12724  (,)cioo 13237  [,]cicc 13240  ...cfz 13399  ..^cfzo 13546  Σcsu 15585  cprod 15802  expce 15960  πcpi 15965  cnccncf 24789  volcvol 25384  𝐿1cibl 25538  citg 25539  reprcrepr 34611  vtscvts 34638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-symdif 4201  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-prod 15803  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-ovol 25385  df-vol 25386  df-mbf 25540  df-itg1 25541  df-itg2 25542  df-ibl 25543  df-itg 25544  df-0p 25591  df-limc 25787  df-dv 25788  df-repr 34612  df-vts 34639
This theorem is referenced by:  circlemethnat  34644  circlevma  34645  circlemethhgt  34646
  Copyright terms: Public domain W3C validator