Step | Hyp | Ref
| Expression |
1 | | circlemeth.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈
ℕ0) |
3 | | ioossre 13069 |
. . . . . . . . 9
⊢ (0(,)1)
⊆ ℝ |
4 | | ax-resscn 10859 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
5 | 3, 4 | sstri 3926 |
. . . . . . . 8
⊢ (0(,)1)
⊆ ℂ |
6 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0(,)1) ⊆
ℂ) |
7 | 6 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ) |
8 | | circlemeth.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℕ) |
9 | 8 | nnnn0d 12223 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈
ℕ0) |
11 | | circlemeth.l |
. . . . . . 7
⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m
ℕ)) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m
ℕ)) |
13 | 2, 7, 10, 12 | vtsprod 32519 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥))))) |
14 | 13 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) = (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
15 | | fzfid 13621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (0...(𝑆 · 𝑁)) ∈ Fin) |
16 | | ax-icn 10861 |
. . . . . . . . 9
⊢ i ∈
ℂ |
17 | | 2cn 11978 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
18 | | picn 25521 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
19 | 17, 18 | mulcli 10913 |
. . . . . . . . 9
⊢ (2
· π) ∈ ℂ |
20 | 16, 19 | mulcli 10913 |
. . . . . . . 8
⊢ (i
· (2 · π)) ∈ ℂ |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (i · (2
· π)) ∈ ℂ) |
22 | 1 | nn0cnd 12225 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
23 | 22 | negcld 11249 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑁 ∈ ℂ) |
24 | 23 | ralrimivw 3108 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (0(,)1)-𝑁 ∈ ℂ) |
25 | 24 | r19.21bi 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → -𝑁 ∈ ℂ) |
26 | 25, 7 | mulcld 10926 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (-𝑁 · 𝑥) ∈ ℂ) |
27 | 21, 26 | mulcld 10926 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → ((i · (2
· π)) · (-𝑁 · 𝑥)) ∈ ℂ) |
28 | 27 | efcld 32471 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i
· (2 · π)) · (-𝑁 · 𝑥))) ∈ ℂ) |
29 | | fz1ssnn 13216 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ |
30 | 29 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ) |
31 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁))) |
32 | 31 | elfzelzd 13186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ) |
33 | 32 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ) |
34 | 10 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈
ℕ0) |
35 | | fzfid 13621 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin) |
36 | 30, 33, 34, 35 | reprfi 32496 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin) |
37 | | fzofi 13622 |
. . . . . . . . 9
⊢
(0..^𝑆) ∈
Fin |
38 | 37 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin) |
39 | 1 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈
ℕ0) |
40 | 9 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈
ℕ0) |
41 | 32 | zcnd 12356 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ) |
42 | 41 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑚 ∈ ℂ) |
43 | 11 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m
ℕ)) |
44 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
45 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ) |
46 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ) |
47 | 9 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈
ℕ0) |
48 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) |
49 | 45, 46, 47, 48 | reprf 32492 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁)) |
50 | 49 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ (1...𝑁)) |
51 | 29, 50 | sselid 3915 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ ℕ) |
52 | 39, 40, 42, 43, 44, 51 | breprexplemb 32511 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
53 | 52 | adantl3r 746 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
54 | 38, 53 | fprodcl 15590 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
55 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (i · (2 · π))
∈ ℂ) |
56 | 33 | zcnd 12356 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℂ) |
57 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑥 ∈ ℂ) |
58 | 56, 57 | mulcld 10926 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 · 𝑥) ∈ ℂ) |
59 | 55, 58 | mulcld 10926 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· (𝑚 · 𝑥)) ∈
ℂ) |
60 | 59 | efcld 32471 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ∈
ℂ) |
61 | 60 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 ·
π)) · (𝑚 ·
𝑥))) ∈
ℂ) |
62 | 54, 61 | mulcld 10926 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ∈
ℂ) |
63 | 36, 62 | fsumcl 15373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ∈
ℂ) |
64 | 15, 28, 63 | fsummulc1 15425 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
65 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘((i · (2
· π)) · (-𝑁 · 𝑥))) ∈ ℂ) |
66 | 36, 65, 62 | fsummulc1 15425 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
67 | 65 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 ·
π)) · (-𝑁
· 𝑥))) ∈
ℂ) |
68 | 54, 61, 67 | mulassd 10929 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))) |
69 | 27 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· (-𝑁 · 𝑥)) ∈
ℂ) |
70 | | efadd 15731 |
. . . . . . . . . . . 12
⊢ ((((i
· (2 · π)) · (𝑚 · 𝑥)) ∈ ℂ ∧ ((i · (2
· π)) · (-𝑁 · 𝑥)) ∈ ℂ) → (exp‘(((i
· (2 · π)) · (𝑚 · 𝑥)) + ((i · (2 · π)) ·
(-𝑁 · 𝑥)))) = ((exp‘((i ·
(2 · π)) · (𝑚 · 𝑥))) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥))))) |
71 | 59, 69, 70 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2
· π)) · (𝑚
· 𝑥)) + ((i ·
(2 · π)) · (-𝑁 · 𝑥)))) = ((exp‘((i · (2 ·
π)) · (𝑚 ·
𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
72 | 26 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (-𝑁 · 𝑥) ∈ ℂ) |
73 | 55, 58, 72 | adddid 10930 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = (((i · (2 · π))
· (𝑚 · 𝑥)) + ((i · (2 ·
π)) · (-𝑁
· 𝑥)))) |
74 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → -𝑁 ∈ ℂ) |
75 | 56, 74, 57 | adddird 10931 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) |
76 | 22 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ) |
77 | 56, 76 | negsubd 11268 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 + -𝑁) = (𝑚 − 𝑁)) |
78 | 77 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 + -𝑁) · 𝑥) = ((𝑚 − 𝑁) · 𝑥)) |
79 | 75, 78 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 · 𝑥) + (-𝑁 · 𝑥)) = ((𝑚 − 𝑁) · 𝑥)) |
80 | 79 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· ((𝑚 · 𝑥) + (-𝑁 · 𝑥))) = ((i · (2 · π))
· ((𝑚 − 𝑁) · 𝑥))) |
81 | 73, 80 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (((i · (2 · π))
· (𝑚 · 𝑥)) + ((i · (2 ·
π)) · (-𝑁
· 𝑥))) = ((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) |
82 | 81 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (exp‘(((i · (2
· π)) · (𝑚
· 𝑥)) + ((i ·
(2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 ·
π)) · ((𝑚 −
𝑁) · 𝑥)))) |
83 | 71, 82 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (exp‘((i · (2 ·
π)) · ((𝑚 −
𝑁) · 𝑥)))) |
84 | 83 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
85 | 84 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ((exp‘((i · (2
· π)) · (𝑚
· 𝑥))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
86 | 68, 85 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
87 | 86 | sumeq2dv 15343 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)((∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
88 | 66, 87 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
89 | 88 | sumeq2dv 15343 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → Σ𝑚 ∈ (0...(𝑆 · 𝑁))(Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · (𝑚
· 𝑥)))) ·
(exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
90 | 14, 64, 89 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) |
91 | 90 | itgeq2dv 24851 |
. 2
⊢ (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
92 | | ioombl 24634 |
. . . . 5
⊢ (0(,)1)
∈ dom vol |
93 | 92 | a1i 11 |
. . . 4
⊢ (𝜑 → (0(,)1) ∈ dom
vol) |
94 | | fzfid 13621 |
. . . 4
⊢ (𝜑 → (0...(𝑆 · 𝑁)) ∈ Fin) |
95 | | sumex 15327 |
. . . . 5
⊢
Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ V |
96 | 95 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (0(,)1) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁)))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ V) |
97 | 93 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom
vol) |
98 | 29 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ) |
99 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈
ℕ0) |
100 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin) |
101 | 98, 32, 99, 100 | reprfi 32496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin) |
102 | 37 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin) |
103 | 52 | adantllr 715 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
104 | 102, 103 | fprodcl 15590 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
105 | 56, 76 | subcld 11262 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 − 𝑁) ∈ ℂ) |
106 | 105, 57 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 − 𝑁) · 𝑥) ∈ ℂ) |
107 | 55, 106 | mulcld 10926 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((i · (2 · π))
· ((𝑚 − 𝑁) · 𝑥)) ∈ ℂ) |
108 | 107 | an32s 648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) → ((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)) ∈ ℂ) |
109 | 108 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π))
· ((𝑚 − 𝑁) · 𝑥)) ∈ ℂ) |
110 | 109 | efcld 32471 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 ·
π)) · ((𝑚 −
𝑁) · 𝑥))) ∈
ℂ) |
111 | 104, 110 | mulcld 10926 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ℂ) |
112 | 111 | anasss 466 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ (𝑥 ∈ (0(,)1) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ℂ) |
113 | 37 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin) |
114 | 113, 52 | fprodcl 15590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
115 | | fvex 6769 |
. . . . . . . 8
⊢
(exp‘((i · (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ V |
116 | 115 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ V) |
117 | | ioossicc 13094 |
. . . . . . . . . 10
⊢ (0(,)1)
⊆ (0[,]1) |
118 | 117 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ⊆
(0[,]1)) |
119 | 92 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0(,)1) ∈ dom
vol) |
120 | 115 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑥 ∈ (0[,]1)) → (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ V) |
121 | | 0red 10909 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈
ℝ) |
122 | | 1red 10907 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈
ℝ) |
123 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑁 ∈ ℂ) |
124 | 41, 123 | subcld 11262 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 − 𝑁) ∈ ℂ) |
125 | | unitsscn 13161 |
. . . . . . . . . . . . . 14
⊢ (0[,]1)
⊆ ℂ |
126 | 125 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (0[,]1) ⊆
ℂ) |
127 | | ssidd 3940 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ℂ ⊆
ℂ) |
128 | | cncfmptc 23981 |
. . . . . . . . . . . . 13
⊢ (((𝑚 − 𝑁) ∈ ℂ ∧ (0[,]1) ⊆
ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ (𝑚 − 𝑁)) ∈ ((0[,]1)–cn→ℂ)) |
129 | 124, 126,
127, 128 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (𝑚 − 𝑁)) ∈ ((0[,]1)–cn→ℂ)) |
130 | | cncfmptid 23982 |
. . . . . . . . . . . . 13
⊢ (((0[,]1)
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ)) |
131 | 126, 127,
130 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ ((0[,]1)–cn→ℂ)) |
132 | 129, 131 | mulcncf 24515 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ ((𝑚 − 𝑁) · 𝑥)) ∈ ((0[,]1)–cn→ℂ)) |
133 | 132 | efmul2picn 32476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) |
134 | | cniccibl 24910 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
135 | 121, 122,
133, 134 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0[,]1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
136 | 118, 119,
120, 135 | iblss 24874 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
137 | 136 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥)))) ∈
𝐿1) |
138 | 114, 116,
137 | iblmulc2 24900 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑥 ∈ (0(,)1) ↦ (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈
𝐿1) |
139 | 97, 101, 112, 138 | itgfsum 24896 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈ 𝐿1 ∧
∫(0(,)1)Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥)) |
140 | 139 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑥 ∈ (0(,)1) ↦ Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈
𝐿1) |
141 | 93, 94, 96, 140 | itgfsum 24896 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (0(,)1) ↦ Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥))))) ∈ 𝐿1 ∧
∫(0(,)1)Σ𝑚 ∈
(0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥)) |
142 | 141 | simprd 495 |
. 2
⊢ (𝜑 → ∫(0(,)1)Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
143 | | oveq2 7263 |
. . . . . . 7
⊢
(if((𝑚 − 𝑁) = 0, 1, 0) = 1 →
(Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 1)) |
144 | | oveq2 7263 |
. . . . . . 7
⊢
(if((𝑚 − 𝑁) = 0, 1, 0) = 0 →
(Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 0)) |
145 | 101, 114 | fsumcl 15373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
146 | 145 | mulid1d 10923 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 1) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
147 | 145 | mul01d 11104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · 0) = 0) |
148 | 143, 144,
146, 147 | ifeq3da 30790 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚 − 𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
149 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑚 ∈ {𝑁} ↔ 𝑚 = 𝑁) |
150 | 41, 123 | subeq0ad 11272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ((𝑚 − 𝑁) = 0 ↔ 𝑚 = 𝑁)) |
151 | 149, 150 | bitr4id 289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑚 ∈ {𝑁} ↔ (𝑚 − 𝑁) = 0)) |
152 | 151 | ifbid 4479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0) = if((𝑚 − 𝑁) = 0, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
153 | 1 | nn0zd 12353 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
154 | 153 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑁 ∈ ℤ) |
155 | 46, 154 | zsubcld 12360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 − 𝑁) ∈ ℤ) |
156 | | itgexpif 32486 |
. . . . . . . . . 10
⊢ ((𝑚 − 𝑁) ∈ ℤ →
∫(0(,)1)(exp‘((i · (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥 = if((𝑚 − 𝑁) = 0, 1, 0)) |
157 | 155, 156 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∫(0(,)1)(exp‘((i ·
(2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥 = if((𝑚 − 𝑁) = 0, 1, 0)) |
158 | 157 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
159 | 158 | sumeq2dv 15343 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
160 | | 1cnd 10901 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 1 ∈
ℂ) |
161 | | 0cnd 10899 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → 0 ∈
ℂ) |
162 | 160, 161 | ifcld 4502 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → if((𝑚 − 𝑁) = 0, 1, 0) ∈
ℂ) |
163 | 101, 162,
114 | fsummulc1 15425 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
164 | 159, 163 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · if((𝑚 − 𝑁) = 0, 1, 0))) |
165 | 148, 152,
164 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
166 | 165 | sumeq2dv 15343 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
167 | | 0zd 12261 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
168 | 9 | nn0zd 12353 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℤ) |
169 | 168, 153 | zmulcld 12361 |
. . . . . . 7
⊢ (𝜑 → (𝑆 · 𝑁) ∈ ℤ) |
170 | 1 | nn0ge0d 12226 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝑁) |
171 | | nnmulge 30975 |
. . . . . . . 8
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ≤ (𝑆 · 𝑁)) |
172 | 8, 1, 171 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≤ (𝑆 · 𝑁)) |
173 | 167, 169,
153, 170, 172 | elfzd 13176 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (0...(𝑆 · 𝑁))) |
174 | 173 | snssd 4739 |
. . . . 5
⊢ (𝜑 → {𝑁} ⊆ (0...(𝑆 · 𝑁))) |
175 | 174 | sselda 3917 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑁}) → 𝑚 ∈ (0...(𝑆 · 𝑁))) |
176 | 175, 145 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑁}) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
177 | 176 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
178 | 94 | olcd 870 |
. . . . 5
⊢ (𝜑 → ((0...(𝑆 · 𝑁)) ⊆ (ℤ≥‘0)
∨ (0...(𝑆 · 𝑁)) ∈ Fin)) |
179 | | sumss2 15366 |
. . . . 5
⊢ ((({𝑁} ⊆ (0...(𝑆 · 𝑁)) ∧ ∀𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) ∧ ((0...(𝑆 · 𝑁)) ⊆ (ℤ≥‘0)
∨ (0...(𝑆 · 𝑁)) ∈ Fin)) →
Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
180 | 174, 177,
178, 179 | syl21anc 834 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))if(𝑚 ∈ {𝑁}, Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)), 0)) |
181 | 29 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
182 | | fzfid 13621 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
183 | 181, 153,
9, 182 | reprfi 32496 |
. . . . . 6
⊢ (𝜑 → ((1...𝑁)(repr‘𝑆)𝑁) ∈ Fin) |
184 | 37 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (0..^𝑆) ∈ Fin) |
185 | 1 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈
ℕ0) |
186 | 9 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑆 ∈
ℕ0) |
187 | 22 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℂ) |
188 | 11 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐿:(0..^𝑆)⟶(ℂ ↑m
ℕ)) |
189 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
190 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → (1...𝑁) ⊆ ℕ) |
191 | 153 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑁 ∈ ℤ) |
192 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑆 ∈
ℕ0) |
193 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) |
194 | 190, 191,
192, 193 | reprf 32492 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → 𝑐:(0..^𝑆)⟶(1...𝑁)) |
195 | 194 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ (1...𝑁)) |
196 | 29, 195 | sselid 3915 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐‘𝑎) ∈ ℕ) |
197 | 185, 186,
187, 188, 189, 196 | breprexplemb 32511 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
198 | 184, 197 | fprodcl 15590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
199 | 183, 198 | fsumcl 15373 |
. . . . 5
⊢ (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) |
200 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((1...𝑁)(repr‘𝑆)𝑚) = ((1...𝑁)(repr‘𝑆)𝑁)) |
201 | 200 | sumeq1d 15341 |
. . . . . 6
⊢ (𝑚 = 𝑁 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
202 | 201 | sumsn 15386 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ Σ𝑐 ∈
((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) ∈ ℂ) → Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
203 | 1, 199, 202 | syl2anc 583 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ {𝑁}Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
204 | 166, 180,
203 | 3eqtr2d 2784 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
205 | 139 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
206 | 110 | an32s 648 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) ∈ ℂ) |
207 | 114, 206,
137 | itgmulc2 24903 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
208 | 207 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥) |
209 | 205, 208 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑆 · 𝑁))) → ∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥)) |
210 | 209 | sumeq2dv 15343 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · ∫(0(,)1)(exp‘((i
· (2 · π)) · ((𝑚 − 𝑁) · 𝑥))) d𝑥)) |
211 | 1, 9 | reprfz1 32504 |
. . . 4
⊢ (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁)) |
212 | 211 | sumeq1d 15341 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
213 | 204, 210,
212 | 3eqtr4d 2788 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))∫(0(,)1)Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2
· π)) · ((𝑚 − 𝑁) · 𝑥)))) d𝑥 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎))) |
214 | 91, 142, 213 | 3eqtrrd 2783 |
1
⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2
· π)) · (-𝑁 · 𝑥)))) d𝑥) |