| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifnefals | Structured version Visualization version GIF version | ||
| Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| ifnefals | ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4482 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . 2 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| 3 | simplr 768 | . . . 4 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 4 | simpll 766 | . . . . 5 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → 𝐴 ≠ 𝐵) | |
| 5 | 4 | necomd 2984 | . . . 4 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → 𝐵 ≠ 𝐴) |
| 6 | 3, 5 | eqnetrd 2996 | . . 3 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐴) |
| 7 | 6 | neneqd 2934 | . 2 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐴) |
| 8 | 2, 7 | pm2.65da 816 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2929 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-if 4477 |
| This theorem is referenced by: ifnebib 32550 |
| Copyright terms: Public domain | W3C validator |