Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifnebib Structured version   Visualization version   GIF version

Theorem ifnebib 32572
Description: The converse of ifbi 4570 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnebib (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))

Proof of Theorem ifnebib
StepHypRef Expression
1 eqif 4589 . . 3 (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)))
2 ifnetrue 32570 . . . . . 6 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)
32adantrl 715 . . . . 5 ((𝐴𝐵 ∧ (𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴)) → 𝜑)
4 simprl 770 . . . . 5 ((𝐴𝐵 ∧ (𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴)) → 𝜓)
53, 42thd 265 . . . 4 ((𝐴𝐵 ∧ (𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴)) → (𝜑𝜓))
6 ifnefals 32571 . . . . . 6 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑)
76adantrl 715 . . . . 5 ((𝐴𝐵 ∧ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → ¬ 𝜑)
8 simprl 770 . . . . 5 ((𝐴𝐵 ∧ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → ¬ 𝜓)
97, 82falsed 376 . . . 4 ((𝐴𝐵 ∧ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → (𝜑𝜓))
105, 9jaodan 958 . . 3 ((𝐴𝐵 ∧ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵))) → (𝜑𝜓))
111, 10sylan2b 593 . 2 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) → (𝜑𝜓))
12 ifbi 4570 . . 3 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
1312adantl 481 . 2 ((𝐴𝐵 ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
1411, 13impbida 800 1 (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wne 2946  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-if 4549
This theorem is referenced by:  ply1moneq  33576
  Copyright terms: Public domain W3C validator