Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifnebib Structured version   Visualization version   GIF version

Theorem ifnebib 31776
Description: The converse of ifbi 4550 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnebib (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))

Proof of Theorem ifnebib
StepHypRef Expression
1 eqif 4569 . . 3 (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)))
2 ifnetrue 31774 . . . . . 6 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)
32adantrl 714 . . . . 5 ((𝐴𝐵 ∧ (𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴)) → 𝜑)
4 simprl 769 . . . . 5 ((𝐴𝐵 ∧ (𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴)) → 𝜓)
53, 42thd 264 . . . 4 ((𝐴𝐵 ∧ (𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴)) → (𝜑𝜓))
6 ifnefals 31775 . . . . . 6 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑)
76adantrl 714 . . . . 5 ((𝐴𝐵 ∧ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → ¬ 𝜑)
8 simprl 769 . . . . 5 ((𝐴𝐵 ∧ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → ¬ 𝜓)
97, 82falsed 376 . . . 4 ((𝐴𝐵 ∧ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → (𝜑𝜓))
105, 9jaodan 956 . . 3 ((𝐴𝐵 ∧ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵))) → (𝜑𝜓))
111, 10sylan2b 594 . 2 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) → (𝜑𝜓))
12 ifbi 4550 . . 3 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
1312adantl 482 . 2 ((𝐴𝐵 ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
1411, 13impbida 799 1 (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wne 2940  ifcif 4528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-if 4529
This theorem is referenced by:  ply1moneq  32660
  Copyright terms: Public domain W3C validator