| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifnmfalse | Structured version Visualization version GIF version | ||
| Description: If A is not a member of B, but an "if" condition requires it, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4483 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ifnmfalse | ⊢ (𝐴 ∉ 𝐵 → if(𝐴 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3034 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | iffalse 4483 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → if(𝐴 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∉ 𝐵 → if(𝐴 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 ifcif 4474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nel 3034 df-if 4475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |