Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifnmfalse | Structured version Visualization version GIF version |
Description: If A is not a member of B, but an "if" condition requires it, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4468 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnmfalse | ⊢ (𝐴 ∉ 𝐵 → if(𝐴 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3050 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | iffalse 4468 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → if(𝐴 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ∉ 𝐵 → if(𝐴 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nel 3050 df-if 4460 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |