Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifnmfalse Structured version   Visualization version   GIF version

Theorem ifnmfalse 47895
Description: If A is not a member of B, but an "if" condition requires it, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4536 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
ifnmfalse (𝐴𝐵 → if(𝐴𝐵, 𝐶, 𝐷) = 𝐷)

Proof of Theorem ifnmfalse
StepHypRef Expression
1 df-nel 3045 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 iffalse 4536 . 2 𝐴𝐵 → if(𝐴𝐵, 𝐶, 𝐷) = 𝐷)
31, 2sylbi 216 1 (𝐴𝐵 → if(𝐴𝐵, 𝐶, 𝐷) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2104  wnel 3044  ifcif 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nel 3045  df-if 4528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator