Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotsqcscsq Structured version   Visualization version   GIF version

Theorem cotsqcscsq 49751
Description: Prove the tangent squared cosecant squared identity (1 + ((cot‘𝐴)↑2)) = ((csc‘𝐴)↑2)). (Contributed by David A. Wheeler, 27-May-2015.)
Assertion
Ref Expression
cotsqcscsq ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + ((cot‘𝐴)↑2)) = ((csc‘𝐴)↑2))

Proof of Theorem cotsqcscsq
StepHypRef Expression
1 cotval 49738 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
21oveq1d 7402 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((cot‘𝐴)↑2) = (((cos‘𝐴) / (sin‘𝐴))↑2))
32oveq2d 7403 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + ((cot‘𝐴)↑2)) = (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)))
4 sincossq 16144 . . . . 5 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
54oveq1d 7402 . . . 4 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)) = (1 / ((sin‘𝐴)↑2)))
65adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)) = (1 / ((sin‘𝐴)↑2)))
7 sincl 16094 . . . . . . . 8 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
87sqcld 14109 . . . . . . 7 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
98adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ∈ ℂ)
10 sqne0 14088 . . . . . . . 8 ((sin‘𝐴) ∈ ℂ → (((sin‘𝐴)↑2) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
117, 10syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
1211biimpar 477 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ 0)
139, 12dividd 11956 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) / ((sin‘𝐴)↑2)) = 1)
1413oveq1d 7402 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((sin‘𝐴)↑2)) + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))) = (1 + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))))
15 coscl 16095 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
1615sqcld 14109 . . . . . 6 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
1716adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ∈ ℂ)
189, 17, 9, 12divdird 11996 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)) = ((((sin‘𝐴)↑2) / ((sin‘𝐴)↑2)) + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))))
1915, 7jca 511 . . . . . 6 (𝐴 ∈ ℂ → ((cos‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ))
20 2nn0 12459 . . . . . . . 8 2 ∈ ℕ0
21 expdiv 14078 . . . . . . . 8 (((cos‘𝐴) ∈ ℂ ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2220, 21mp3an3 1452 . . . . . . 7 (((cos‘𝐴) ∈ ℂ ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2322anassrs 467 . . . . . 6 ((((cos‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) ∧ (sin‘𝐴) ≠ 0) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2419, 23sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2524oveq2d 7403 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)) = (1 + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))))
2614, 18, 253eqtr4rd 2775 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)) = ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)))
27 cscval 49737 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))
2827oveq1d 7402 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((csc‘𝐴)↑2) = ((1 / (sin‘𝐴))↑2))
29 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
30 expdiv 14078 . . . . . . 7 ((1 ∈ ℂ ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → ((1 / (sin‘𝐴))↑2) = ((1↑2) / ((sin‘𝐴)↑2)))
3129, 20, 30mp3an13 1454 . . . . . 6 (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((1 / (sin‘𝐴))↑2) = ((1↑2) / ((sin‘𝐴)↑2)))
327, 31sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((1 / (sin‘𝐴))↑2) = ((1↑2) / ((sin‘𝐴)↑2)))
33 sq1 14160 . . . . . 6 (1↑2) = 1
3433oveq1i 7397 . . . . 5 ((1↑2) / ((sin‘𝐴)↑2)) = (1 / ((sin‘𝐴)↑2))
3532, 34eqtrdi 2780 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((1 / (sin‘𝐴))↑2) = (1 / ((sin‘𝐴)↑2)))
3628, 35eqtrd 2764 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((csc‘𝐴)↑2) = (1 / ((sin‘𝐴)↑2)))
376, 26, 363eqtr4rd 2775 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((csc‘𝐴)↑2) = (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)))
383, 37eqtr4d 2767 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + ((cot‘𝐴)↑2)) = ((csc‘𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   / cdiv 11835  2c2 12241  0cn0 12442  cexp 14026  sincsin 16029  cosccos 16030  cscccsc 49731  cotccot 49732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-csc 49734  df-cot 49735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator