Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logb2aval Structured version   Visualization version   GIF version

Theorem logb2aval 49338
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used in the 2-argument form logb𝐵, 𝑋 (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.)
Assertion
Ref Expression
logb2aval ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ( logb ‘⟨𝐵, 𝑋⟩) = ((log‘𝑋) / (log‘𝐵)))

Proof of Theorem logb2aval
StepHypRef Expression
1 df-ov 7435 . 2 (𝐵 logb 𝑋) = ( logb ‘⟨𝐵, 𝑋⟩)
2 logbval 26810 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
31, 2eqtr3id 2790 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ( logb ‘⟨𝐵, 𝑋⟩) = ((log‘𝑋) / (log‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3947  {csn 4625  {cpr 4627  cop 4631  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   / cdiv 11921  logclog 26597   logb clogb 26808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-logb 26809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator