| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > logb2aval | Structured version Visualization version GIF version | ||
| Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used in the 2-argument form logb 〈𝐵, 𝑋〉 (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| logb2aval | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ( logb ‘〈𝐵, 𝑋〉) = ((log‘𝑋) / (log‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . 2 ⊢ (𝐵 logb 𝑋) = ( logb ‘〈𝐵, 𝑋〉) | |
| 2 | logbval 26683 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
| 3 | 1, 2 | eqtr3id 2779 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ( logb ‘〈𝐵, 𝑋〉) = ((log‘𝑋) / (log‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 {cpr 4594 〈cop 4598 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 / cdiv 11842 logclog 26470 logb clogb 26681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-logb 26682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |