Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logb2aval Structured version   Visualization version   GIF version

Theorem logb2aval 46137
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used in the 2-argument form logb𝐵, 𝑋 (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.)
Assertion
Ref Expression
logb2aval ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ( logb ‘⟨𝐵, 𝑋⟩) = ((log‘𝑋) / (log‘𝐵)))

Proof of Theorem logb2aval
StepHypRef Expression
1 df-ov 7216 . 2 (𝐵 logb 𝑋) = ( logb ‘⟨𝐵, 𝑋⟩)
2 logbval 25649 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
31, 2eqtr3id 2792 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ( logb ‘⟨𝐵, 𝑋⟩) = ((log‘𝑋) / (log‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  {csn 4541  {cpr 4543  cop 4547  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   / cdiv 11489  logclog 25443   logb clogb 25647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-logb 25648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator