Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpimpda | Structured version Visualization version GIF version |
Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 27-Feb-2021.) |
Ref | Expression |
---|---|
ifpimpda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
ifpimpda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) |
Ref | Expression |
---|---|
ifpimpda | ⊢ (𝜑 → if-(𝜓, 𝜒, 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpimpda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | ifpimpda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) | |
4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) |
5 | dfifp2 1061 | . 2 ⊢ (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓 → 𝜒) ∧ (¬ 𝜓 → 𝜃))) | |
6 | 2, 4, 5 | sylanbrc 582 | 1 ⊢ (𝜑 → if-(𝜓, 𝜒, 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: ifpprsnss 4697 wlkp1lem8 27950 1wlkdlem4 28405 revwlk 32986 prjspner01 40383 |
Copyright terms: Public domain | W3C validator |