| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpimpda | Structured version Visualization version GIF version | ||
| Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 27-Feb-2021.) |
| Ref | Expression |
|---|---|
| ifpimpda.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| ifpimpda.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) |
| Ref | Expression |
|---|---|
| ifpimpda | ⊢ (𝜑 → if-(𝜓, 𝜒, 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpimpda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | ifpimpda.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) |
| 5 | dfifp2 1064 | . 2 ⊢ (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓 → 𝜒) ∧ (¬ 𝜓 → 𝜃))) | |
| 6 | 2, 4, 5 | sylanbrc 583 | 1 ⊢ (𝜑 → if-(𝜓, 𝜒, 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: ifpprsnss 4744 psdmul 22118 wlkp1lem8 29626 1wlkdlem4 30087 revwlk 35089 prjspner01 42598 |
| Copyright terms: Public domain | W3C validator |