MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpprsnss Structured version   Visualization version   GIF version

Theorem ifpprsnss 4673
Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
ifpprsnss (𝑃 = {𝐴, 𝐵} → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))

Proof of Theorem ifpprsnss
StepHypRef Expression
1 preq2 4643 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2 dfsn2 4553 . . . . . 6 {𝐴} = {𝐴, 𝐴}
31, 2syl6eqr 2874 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
43eqcoms 2829 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
54eqeq2d 2832 . . 3 (𝐴 = 𝐵 → (𝑃 = {𝐴, 𝐵} ↔ 𝑃 = {𝐴}))
65biimpac 482 . 2 ((𝑃 = {𝐴, 𝐵} ∧ 𝐴 = 𝐵) → 𝑃 = {𝐴})
7 eqimss2 4000 . . 3 (𝑃 = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ 𝑃)
87adantr 484 . 2 ((𝑃 = {𝐴, 𝐵} ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ⊆ 𝑃)
96, 8ifpimpda 1078 1 (𝑃 = {𝐴, 𝐵} → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  if-wif 1058   = wceq 1538  wss 3910  {csn 4540  {cpr 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-ex 1782  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-v 3473  df-un 3915  df-in 3917  df-ss 3927  df-sn 4541  df-pr 4543
This theorem is referenced by:  upgriswlk  27408  eupth2lem3lem7  27997  upwlkwlk  44161
  Copyright terms: Public domain W3C validator