MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpprsnss Structured version   Visualization version   GIF version

Theorem ifpprsnss 4728
Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
ifpprsnss (𝑃 = {𝐴, 𝐵} → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))

Proof of Theorem ifpprsnss
StepHypRef Expression
1 preq2 4698 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2 dfsn2 4602 . . . . . 6 {𝐴} = {𝐴, 𝐴}
31, 2eqtr4di 2782 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
43eqcoms 2737 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
54eqeq2d 2740 . . 3 (𝐴 = 𝐵 → (𝑃 = {𝐴, 𝐵} ↔ 𝑃 = {𝐴}))
65biimpac 478 . 2 ((𝑃 = {𝐴, 𝐵} ∧ 𝐴 = 𝐵) → 𝑃 = {𝐴})
7 eqimss2 4006 . . 3 (𝑃 = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ 𝑃)
87adantr 480 . 2 ((𝑃 = {𝐴, 𝐵} ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ⊆ 𝑃)
96, 8ifpimpda 1080 1 (𝑃 = {𝐴, 𝐵} → if-(𝐴 = 𝐵, 𝑃 = {𝐴}, {𝐴, 𝐵} ⊆ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  if-wif 1062   = wceq 1540  wss 3914  {csn 4589  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592
This theorem is referenced by:  upgriswlk  29569  eupth2lem3lem7  30163  upwlkwlk  48127
  Copyright terms: Public domain W3C validator