| Step | Hyp | Ref
| Expression |
| 1 | | wlkp1.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | wlkp1.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | | wlkp1.f |
. . . 4
⊢ (𝜑 → Fun 𝐼) |
| 4 | | wlkp1.a |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 5 | | wlkp1.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 6 | | wlkp1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 7 | | wlkp1.d |
. . . 4
⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| 8 | | wlkp1.w |
. . . 4
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 9 | | wlkp1.n |
. . . 4
⊢ 𝑁 = (♯‘𝐹) |
| 10 | | wlkp1.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| 11 | | wlkp1.x |
. . . 4
⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| 12 | | wlkp1.u |
. . . 4
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| 13 | | wlkp1.h |
. . . 4
⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| 14 | | wlkp1.q |
. . . 4
⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| 15 | | wlkp1.s |
. . . 4
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | wlkp1lem6 29696 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) |
| 17 | 10 | elfvexd 6945 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
| 18 | 1, 2 | iswlkg 29631 |
. . . . . 6
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 20 | 9 | eqcomi 2746 |
. . . . . . . . 9
⊢
(♯‘𝐹) =
𝑁 |
| 21 | 20 | oveq2i 7442 |
. . . . . . . 8
⊢
(0..^(♯‘𝐹)) = (0..^𝑁) |
| 22 | 21 | raleqi 3324 |
. . . . . . 7
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ ∀𝑘 ∈ (0..^𝑁)if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 23 | 22 | biimpi 216 |
. . . . . 6
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 24 | 23 | 3ad2ant3 1136 |
. . . . 5
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 25 | 19, 24 | biimtrdi 253 |
. . . 4
⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 26 | 8, 25 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 27 | | eqeq12 2754 |
. . . . . . 7
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → ((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)))) |
| 28 | 27 | 3adant3 1133 |
. . . . . 6
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → ((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)))) |
| 29 | | simp3 1139 |
. . . . . . 7
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
| 30 | | simp1 1137 |
. . . . . . . 8
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
| 31 | 30 | sneqd 4638 |
. . . . . . 7
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → {(𝑄‘𝑘)} = {(𝑃‘𝑘)}) |
| 32 | 29, 31 | eqeq12d 2753 |
. . . . . 6
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → (((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)} ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)})) |
| 33 | | preq12 4735 |
. . . . . . . 8
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 34 | 33 | 3adant3 1133 |
. . . . . . 7
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 35 | 34, 29 | sseq12d 4017 |
. . . . . 6
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → ({(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)) ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 36 | 28, 32, 35 | ifpbi123d 1079 |
. . . . 5
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → (if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 37 | 36 | biimprd 248 |
. . . 4
⊢ (((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))))) |
| 38 | 37 | ral2imi 3085 |
. . 3
⊢
(∀𝑘 ∈
(0..^𝑁)((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) → (∀𝑘 ∈ (0..^𝑁)if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))))) |
| 39 | 16, 26, 38 | sylc 65 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | wlkp1lem3 29693 |
. . . . 5
⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| 41 | 40 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| 42 | 5, 10, 7 | 3jca 1129 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ 𝑊 ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼)) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝑁) = (𝑄‘(𝑁 + 1))) → (𝐵 ∈ 𝑊 ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼)) |
| 44 | | fsnunfv 7207 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
| 45 | 43, 44 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘𝑁) = (𝑄‘(𝑁 + 1))) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
| 46 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑄‘𝑥) = (𝑄‘𝑁)) |
| 47 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑃‘𝑥) = (𝑃‘𝑁)) |
| 48 | 46, 47 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝑄‘𝑥) = (𝑃‘𝑥) ↔ (𝑄‘𝑁) = (𝑃‘𝑁))) |
| 49 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | wlkp1lem5 29695 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥)) |
| 50 | 2 | wlkf 29632 |
. . . . . . . . . 10
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 51 | | lencl 14571 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈
ℕ0) |
| 52 | 9 | eleq1i 2832 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
↔ (♯‘𝐹)
∈ ℕ0) |
| 53 | | elnn0uz 12923 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈
(ℤ≥‘0)) |
| 54 | 52, 53 | sylbb1 237 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ ℕ0 → 𝑁 ∈
(ℤ≥‘0)) |
| 55 | 51, 54 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Word dom 𝐼 → 𝑁 ∈
(ℤ≥‘0)) |
| 56 | 8, 50, 55 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 57 | 56, 53 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 58 | | nn0fz0 13665 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) |
| 59 | 57, 58 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 60 | 48, 49, 59 | rspcdva 3623 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝑁) = (𝑃‘𝑁)) |
| 61 | 14 | fveq1i 6907 |
. . . . . . . . . . 11
⊢ (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) |
| 62 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ (𝑁 + 1) ∈ V |
| 63 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | wlkp1lem1 29691 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
| 64 | | fsnunfv 7207 |
. . . . . . . . . . . 12
⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
| 65 | 62, 6, 63, 64 | mp3an2i 1468 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
| 66 | 61, 65 | eqtrid 2789 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶) |
| 67 | 66 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃‘𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃‘𝑁) = 𝐶)) |
| 68 | | eqcom 2744 |
. . . . . . . . 9
⊢ ((𝑃‘𝑁) = 𝐶 ↔ 𝐶 = (𝑃‘𝑁)) |
| 69 | 67, 68 | bitrdi 287 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃‘𝑁) = (𝑄‘(𝑁 + 1)) ↔ 𝐶 = (𝑃‘𝑁))) |
| 70 | | wlkp1.l |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) |
| 71 | | sneq 4636 |
. . . . . . . . . . 11
⊢ (𝐶 = (𝑃‘𝑁) → {𝐶} = {(𝑃‘𝑁)}) |
| 72 | 71 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → {𝐶} = {(𝑃‘𝑁)}) |
| 73 | 70, 72 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {(𝑃‘𝑁)}) |
| 74 | 73 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 = (𝑃‘𝑁) → 𝐸 = {(𝑃‘𝑁)})) |
| 75 | 69, 74 | sylbid 240 |
. . . . . . 7
⊢ (𝜑 → ((𝑃‘𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃‘𝑁)})) |
| 76 | | eqeq1 2741 |
. . . . . . . 8
⊢ ((𝑄‘𝑁) = (𝑃‘𝑁) → ((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃‘𝑁) = (𝑄‘(𝑁 + 1)))) |
| 77 | | sneq 4636 |
. . . . . . . . 9
⊢ ((𝑄‘𝑁) = (𝑃‘𝑁) → {(𝑄‘𝑁)} = {(𝑃‘𝑁)}) |
| 78 | 77 | eqeq2d 2748 |
. . . . . . . 8
⊢ ((𝑄‘𝑁) = (𝑃‘𝑁) → (𝐸 = {(𝑄‘𝑁)} ↔ 𝐸 = {(𝑃‘𝑁)})) |
| 79 | 76, 78 | imbi12d 344 |
. . . . . . 7
⊢ ((𝑄‘𝑁) = (𝑃‘𝑁) → (((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄‘𝑁)}) ↔ ((𝑃‘𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃‘𝑁)}))) |
| 80 | 75, 79 | syl5ibrcom 247 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘𝑁) = (𝑃‘𝑁) → ((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄‘𝑁)}))) |
| 81 | 60, 80 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄‘𝑁)})) |
| 82 | 81 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘𝑁) = (𝑄‘(𝑁 + 1))) → 𝐸 = {(𝑄‘𝑁)}) |
| 83 | 41, 45, 82 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}) |
| 84 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | wlkp1lem7 29697 |
. . . 4
⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
| 85 | 84 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘𝑁) = (𝑄‘(𝑁 + 1))) → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
| 86 | 83, 85 | ifpimpda 1081 |
. 2
⊢ (𝜑 → if-((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}, {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁)))) |
| 87 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | wlkp1lem2 29692 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
| 88 | 87 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1))) |
| 89 | | fzosplitsn 13814 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 90 | 56, 89 | syl 17 |
. . . . 5
⊢ (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 91 | 88, 90 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁})) |
| 92 | 91 | raleqdv 3326 |
. . 3
⊢ (𝜑 → (∀𝑘 ∈
(0..^(♯‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ ∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))))) |
| 93 | | ralunb 4197 |
. . . 4
⊢
(∀𝑘 ∈
((0..^𝑁) ∪ {𝑁})if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))))) |
| 94 | 93 | a1i 11 |
. . 3
⊢ (𝜑 → (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))))) |
| 95 | 9 | fvexi 6920 |
. . . . 5
⊢ 𝑁 ∈ V |
| 96 | | wkslem1 29625 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ if-((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}, {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))))) |
| 97 | 96 | ralsng 4675 |
. . . . 5
⊢ (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ if-((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}, {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))))) |
| 98 | 95, 97 | mp1i 13 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ {𝑁}if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ if-((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}, {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))))) |
| 99 | 98 | anbi2d 630 |
. . 3
⊢ (𝜑 → ((∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ∧ if-((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}, {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁)))))) |
| 100 | 92, 94, 99 | 3bitrd 305 |
. 2
⊢ (𝜑 → (∀𝑘 ∈
(0..^(♯‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘))) ∧ if-((𝑄‘𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑁)) = {(𝑄‘𝑁)}, {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁)))))) |
| 101 | 39, 86, 100 | mpbir2and 713 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) |