MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem8 Structured version   Visualization version   GIF version

Theorem wlkp1lem8 28336
Description: Lemma for wlkp1 28337. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
wlkp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
wlkp1lem8 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑁   𝑃,𝑘   𝑄,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑆,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkp1lem8
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 wlkp1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 wlkp1.f . . . 4 (𝜑 → Fun 𝐼)
4 wlkp1.a . . . 4 (𝜑𝐼 ∈ Fin)
5 wlkp1.b . . . 4 (𝜑𝐵𝑊)
6 wlkp1.c . . . 4 (𝜑𝐶𝑉)
7 wlkp1.d . . . 4 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 wlkp1.w . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.n . . . 4 𝑁 = (♯‘𝐹)
10 wlkp1.e . . . 4 (𝜑𝐸 ∈ (Edg‘𝐺))
11 wlkp1.x . . . 4 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 wlkp1.u . . . 4 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
13 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 wlkp1.s . . . 4 (𝜑 → (Vtx‘𝑆) = 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem6 28334 . . 3 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
1710elfvexd 6864 . . . . . 6 (𝜑𝐺 ∈ V)
181, 2iswlkg 28269 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1917, 18syl 17 . . . . 5 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
209eqcomi 2745 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2120oveq2i 7348 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
2221raleqi 3307 . . . . . . 7 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2322biimpi 215 . . . . . 6 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
24233ad2ant3 1134 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2519, 24syl6bi 252 . . . 4 (𝜑 → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
268, 25mpd 15 . . 3 (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
27 eqeq12 2753 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
28273adant3 1131 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
29 simp3 1137 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
30 simp1 1135 . . . . . . . 8 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (𝑄𝑘) = (𝑃𝑘))
3130sneqd 4585 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → {(𝑄𝑘)} = {(𝑃𝑘)})
3229, 31eqeq12d 2752 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
33 preq12 4683 . . . . . . . 8 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
34333adant3 1131 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3534, 29sseq12d 3965 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ({(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
3628, 32, 35ifpbi123d 1077 . . . . 5 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
3736biimprd 247 . . . 4 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
3837ral2imi 3084 . . 3 (∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
3916, 26, 38sylc 65 . 2 (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem3 28331 . . . . 5 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
4140adantr 481 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
425, 10, 73jca 1127 . . . . . 6 (𝜑 → (𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼))
4342adantr 481 . . . . 5 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → (𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼))
44 fsnunfv 7115 . . . . 5 ((𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
4543, 44syl 17 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
46 fveq2 6825 . . . . . . . 8 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
47 fveq2 6825 . . . . . . . 8 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4846, 47eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑁 → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄𝑁) = (𝑃𝑁)))
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 28333 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥))
502wlkf 28270 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
51 lencl 14336 . . . . . . . . . . 11 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
529eleq1i 2827 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
53 elnn0uz 12724 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5452, 53sylbb1 236 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5551, 54syl 17 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼𝑁 ∈ (ℤ‘0))
568, 50, 553syl 18 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘0))
5756, 53sylibr 233 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
58 nn0fz0 13455 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
5957, 58sylib 217 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
6048, 49, 59rspcdva 3571 . . . . . 6 (𝜑 → (𝑄𝑁) = (𝑃𝑁))
6114fveq1i 6826 . . . . . . . . . . 11 (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1))
62 ovex 7370 . . . . . . . . . . . 12 (𝑁 + 1) ∈ V
631, 2, 3, 4, 5, 6, 7, 8, 9wlkp1lem1 28329 . . . . . . . . . . . 12 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
64 fsnunfv 7115 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
6562, 6, 63, 64mp3an2i 1465 . . . . . . . . . . 11 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
6661, 65eqtrid 2788 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶)
6766eqeq2d 2747 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃𝑁) = 𝐶))
68 eqcom 2743 . . . . . . . . 9 ((𝑃𝑁) = 𝐶𝐶 = (𝑃𝑁))
6967, 68bitrdi 286 . . . . . . . 8 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) ↔ 𝐶 = (𝑃𝑁)))
70 wlkp1.l . . . . . . . . . 10 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
71 sneq 4583 . . . . . . . . . . 11 (𝐶 = (𝑃𝑁) → {𝐶} = {(𝑃𝑁)})
7271adantl 482 . . . . . . . . . 10 ((𝜑𝐶 = (𝑃𝑁)) → {𝐶} = {(𝑃𝑁)})
7370, 72eqtrd 2776 . . . . . . . . 9 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {(𝑃𝑁)})
7473ex 413 . . . . . . . 8 (𝜑 → (𝐶 = (𝑃𝑁) → 𝐸 = {(𝑃𝑁)}))
7569, 74sylbid 239 . . . . . . 7 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃𝑁)}))
76 eqeq1 2740 . . . . . . . 8 ((𝑄𝑁) = (𝑃𝑁) → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃𝑁) = (𝑄‘(𝑁 + 1))))
77 sneq 4583 . . . . . . . . 9 ((𝑄𝑁) = (𝑃𝑁) → {(𝑄𝑁)} = {(𝑃𝑁)})
7877eqeq2d 2747 . . . . . . . 8 ((𝑄𝑁) = (𝑃𝑁) → (𝐸 = {(𝑄𝑁)} ↔ 𝐸 = {(𝑃𝑁)}))
7976, 78imbi12d 344 . . . . . . 7 ((𝑄𝑁) = (𝑃𝑁) → (((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)}) ↔ ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃𝑁)})))
8075, 79syl5ibrcom 246 . . . . . 6 (𝜑 → ((𝑄𝑁) = (𝑃𝑁) → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)})))
8160, 80mpd 15 . . . . 5 (𝜑 → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)}))
8281imp 407 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → 𝐸 = {(𝑄𝑁)})
8341, 45, 823eqtrd 2780 . . 3 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)})
841, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem7 28335 . . . 4 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
8584adantr 481 . . 3 ((𝜑 ∧ ¬ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
8683, 85ifpimpda 1080 . 2 (𝜑 → if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))
871, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem2 28330 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
8887oveq2d 7353 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
89 fzosplitsn 13596 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
9056, 89syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
9188, 90eqtrd 2776 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
9291raleqdv 3309 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ ∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
93 ralunb 4138 . . . 4 (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
9493a1i 11 . . 3 (𝜑 → (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))))
959fvexi 6839 . . . . 5 𝑁 ∈ V
96 wkslem1 28263 . . . . . 6 (𝑘 = 𝑁 → (if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
9796ralsng 4621 . . . . 5 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
9895, 97mp1i 13 . . . 4 (𝜑 → (∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
9998anbi2d 629 . . 3 (𝜑 → ((∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))))
10092, 94, 993bitrd 304 . 2 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))))
10139, 86, 100mpbir2and 710 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060  w3a 1086   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  cun 3896  wss 3898  {csn 4573  {cpr 4575  cop 4579   class class class wbr 5092  dom cdm 5620  Fun wfun 6473  wf 6475  cfv 6479  (class class class)co 7337  Fincfn 8804  0cc0 10972  1c1 10973   + caddc 10975  0cn0 12334  cuz 12683  ...cfz 13340  ..^cfzo 13483  chash 14145  Word cword 14317  Vtxcvtx 27655  iEdgciedg 27656  Edgcedg 27706  Walkscwlks 28252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318  df-wlks 28255
This theorem is referenced by:  wlkp1  28337
  Copyright terms: Public domain W3C validator