MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem8 Structured version   Visualization version   GIF version

Theorem wlkp1lem8 29698
Description: Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
wlkp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
wlkp1lem8 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑁   𝑃,𝑘   𝑄,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑆,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkp1lem8
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 wlkp1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 wlkp1.f . . . 4 (𝜑 → Fun 𝐼)
4 wlkp1.a . . . 4 (𝜑𝐼 ∈ Fin)
5 wlkp1.b . . . 4 (𝜑𝐵𝑊)
6 wlkp1.c . . . 4 (𝜑𝐶𝑉)
7 wlkp1.d . . . 4 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 wlkp1.w . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.n . . . 4 𝑁 = (♯‘𝐹)
10 wlkp1.e . . . 4 (𝜑𝐸 ∈ (Edg‘𝐺))
11 wlkp1.x . . . 4 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 wlkp1.u . . . 4 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
13 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 wlkp1.s . . . 4 (𝜑 → (Vtx‘𝑆) = 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem6 29696 . . 3 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
1710elfvexd 6945 . . . . . 6 (𝜑𝐺 ∈ V)
181, 2iswlkg 29631 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1917, 18syl 17 . . . . 5 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
209eqcomi 2746 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2120oveq2i 7442 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
2221raleqi 3324 . . . . . . 7 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2322biimpi 216 . . . . . 6 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
24233ad2ant3 1136 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2519, 24biimtrdi 253 . . . 4 (𝜑 → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
268, 25mpd 15 . . 3 (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
27 eqeq12 2754 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
28273adant3 1133 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
29 simp3 1139 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
30 simp1 1137 . . . . . . . 8 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (𝑄𝑘) = (𝑃𝑘))
3130sneqd 4638 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → {(𝑄𝑘)} = {(𝑃𝑘)})
3229, 31eqeq12d 2753 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
33 preq12 4735 . . . . . . . 8 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
34333adant3 1133 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3534, 29sseq12d 4017 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ({(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
3628, 32, 35ifpbi123d 1079 . . . . 5 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
3736biimprd 248 . . . 4 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
3837ral2imi 3085 . . 3 (∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
3916, 26, 38sylc 65 . 2 (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem3 29693 . . . . 5 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
4140adantr 480 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
425, 10, 73jca 1129 . . . . . 6 (𝜑 → (𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼))
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → (𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼))
44 fsnunfv 7207 . . . . 5 ((𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
4543, 44syl 17 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
46 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
47 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4846, 47eqeq12d 2753 . . . . . . 7 (𝑥 = 𝑁 → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄𝑁) = (𝑃𝑁)))
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 29695 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥))
502wlkf 29632 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
51 lencl 14571 . . . . . . . . . . 11 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
529eleq1i 2832 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
53 elnn0uz 12923 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5452, 53sylbb1 237 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5551, 54syl 17 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼𝑁 ∈ (ℤ‘0))
568, 50, 553syl 18 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘0))
5756, 53sylibr 234 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
58 nn0fz0 13665 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
5957, 58sylib 218 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
6048, 49, 59rspcdva 3623 . . . . . 6 (𝜑 → (𝑄𝑁) = (𝑃𝑁))
6114fveq1i 6907 . . . . . . . . . . 11 (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1))
62 ovex 7464 . . . . . . . . . . . 12 (𝑁 + 1) ∈ V
631, 2, 3, 4, 5, 6, 7, 8, 9wlkp1lem1 29691 . . . . . . . . . . . 12 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
64 fsnunfv 7207 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
6562, 6, 63, 64mp3an2i 1468 . . . . . . . . . . 11 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
6661, 65eqtrid 2789 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶)
6766eqeq2d 2748 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃𝑁) = 𝐶))
68 eqcom 2744 . . . . . . . . 9 ((𝑃𝑁) = 𝐶𝐶 = (𝑃𝑁))
6967, 68bitrdi 287 . . . . . . . 8 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) ↔ 𝐶 = (𝑃𝑁)))
70 wlkp1.l . . . . . . . . . 10 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
71 sneq 4636 . . . . . . . . . . 11 (𝐶 = (𝑃𝑁) → {𝐶} = {(𝑃𝑁)})
7271adantl 481 . . . . . . . . . 10 ((𝜑𝐶 = (𝑃𝑁)) → {𝐶} = {(𝑃𝑁)})
7370, 72eqtrd 2777 . . . . . . . . 9 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {(𝑃𝑁)})
7473ex 412 . . . . . . . 8 (𝜑 → (𝐶 = (𝑃𝑁) → 𝐸 = {(𝑃𝑁)}))
7569, 74sylbid 240 . . . . . . 7 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃𝑁)}))
76 eqeq1 2741 . . . . . . . 8 ((𝑄𝑁) = (𝑃𝑁) → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃𝑁) = (𝑄‘(𝑁 + 1))))
77 sneq 4636 . . . . . . . . 9 ((𝑄𝑁) = (𝑃𝑁) → {(𝑄𝑁)} = {(𝑃𝑁)})
7877eqeq2d 2748 . . . . . . . 8 ((𝑄𝑁) = (𝑃𝑁) → (𝐸 = {(𝑄𝑁)} ↔ 𝐸 = {(𝑃𝑁)}))
7976, 78imbi12d 344 . . . . . . 7 ((𝑄𝑁) = (𝑃𝑁) → (((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)}) ↔ ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃𝑁)})))
8075, 79syl5ibrcom 247 . . . . . 6 (𝜑 → ((𝑄𝑁) = (𝑃𝑁) → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)})))
8160, 80mpd 15 . . . . 5 (𝜑 → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)}))
8281imp 406 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → 𝐸 = {(𝑄𝑁)})
8341, 45, 823eqtrd 2781 . . 3 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)})
841, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem7 29697 . . . 4 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
8584adantr 480 . . 3 ((𝜑 ∧ ¬ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
8683, 85ifpimpda 1081 . 2 (𝜑 → if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))
871, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem2 29692 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
8887oveq2d 7447 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
89 fzosplitsn 13814 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
9056, 89syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
9188, 90eqtrd 2777 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
9291raleqdv 3326 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ ∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
93 ralunb 4197 . . . 4 (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
9493a1i 11 . . 3 (𝜑 → (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))))
959fvexi 6920 . . . . 5 𝑁 ∈ V
96 wkslem1 29625 . . . . . 6 (𝑘 = 𝑁 → (if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
9796ralsng 4675 . . . . 5 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
9895, 97mp1i 13 . . . 4 (𝜑 → (∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
9998anbi2d 630 . . 3 (𝜑 → ((∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))))
10092, 94, 993bitrd 305 . 2 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))))
10139, 86, 100mpbir2and 713 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1063  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cun 3949  wss 3951  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143  dom cdm 5685  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  cuz 12878  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064  Walkscwlks 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-wlks 29617
This theorem is referenced by:  wlkp1  29699
  Copyright terms: Public domain W3C validator