Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  revwlk Structured version   Visualization version   GIF version

Theorem revwlk 32799
Description: The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.)
Assertion
Ref Expression
revwlk (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))

Proof of Theorem revwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 27702 . . 3 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
3 revcl 14326 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
42, 3syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
5 eqid 2737 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
65wlkpwrd 27705 . . . 4 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
7 revcl 14326 . . . 4 (𝑃 ∈ Word (Vtx‘𝐺) → (reverse‘𝑃) ∈ Word (Vtx‘𝐺))
8 wrdf 14074 . . . 4 ((reverse‘𝑃) ∈ Word (Vtx‘𝐺) → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
96, 7, 83syl 18 . . 3 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
10 revlen 14327 . . . . . . 7 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
112, 10syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
1211oveq2d 7229 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0...(♯‘𝐹)))
13 wlklenvp1 27706 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
1413oveq2d 7229 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
15 revlen 14327 . . . . . . . 8 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
166, 15syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
1716oveq2d 7229 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝑃))) = (0..^(♯‘𝑃)))
18 wlkcl 27703 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
1918nn0zd 12280 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℤ)
20 fzval3 13311 . . . . . . 7 ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2119, 20syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2214, 17, 213eqtr4rd 2788 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^(♯‘(reverse‘𝑃))))
2312, 22eqtrd 2777 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0..^(♯‘(reverse‘𝑃))))
2423feq2d 6531 . . 3 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ↔ (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺)))
259, 24mpbird 260 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺))
2611oveq2d 7229 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝐹))) = (0..^(♯‘𝐹)))
2726eleq2d 2823 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝑘 ∈ (0..^(♯‘(reverse‘𝐹))) ↔ 𝑘 ∈ (0..^(♯‘𝐹))))
2827biimpa 480 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
29 revfv 14328 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
302, 29sylan 583 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
31 wlklenvm1 27709 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
3231oveq1d 7228 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = (((♯‘𝑃) − 1) − 1))
33 lencl 14088 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
3433nn0cnd 12152 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
35 sub1m1 12082 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
366, 34, 353syl 18 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
3732, 36eqtrd 2777 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
3837fvoveq1d 7235 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
3938adantr 484 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4030, 39eqtrd 2777 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4140fveq2d 6721 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
4241adantr 484 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
43 fzonn0p1p1 13321 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^(♯‘𝐹)) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4443adantl 485 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4514adantr 484 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
4644, 45eleqtrrd 2841 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^(♯‘𝑃)))
47 revfv 14328 . . . . . . . . . . 11 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑘 + 1) ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
486, 46, 47syl2an2r 685 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
49 elfzoelz 13243 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
5049zcnd 12283 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℂ)
5150adantl 485 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ ℂ)
52 1cnd 10828 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 1 ∈ ℂ)
5351, 52addcomd 11034 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) = (1 + 𝑘))
5453oveq2d 7229 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
556, 34syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) ∈ ℂ)
5655adantr 484 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝑃) ∈ ℂ)
5756, 52subcld 11189 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝑃) − 1) ∈ ℂ)
5857, 52, 51subsub4d 11220 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
5936oveq1d 7228 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6059adantr 484 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6154, 58, 603eqtr2d 2783 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 2) − 𝑘))
6261fveq2d 6721 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6348, 62eqtrd 2777 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6463sneqd 4553 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
6564adantr 484 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
66 sneq 4551 . . . . . . . 8 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
6766adantl 485 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
68 eqcom 2744 . . . . . . . . . 10 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘))
69 fzossfzop1 13320 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7018, 69syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7170, 14sseqtrrd 3942 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝑃)))
7271sselda 3901 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ (0..^(♯‘𝑃)))
73 revfv 14328 . . . . . . . . . . . . 13 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
746, 72, 73syl2an2r 685 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
7557, 51, 52sub32d 11221 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 𝑘) − 1) = ((((♯‘𝑃) − 1) − 1) − 𝑘))
7675oveq1d 7228 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1))
7757, 51subcld 11189 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) ∈ ℂ)
7877, 52npcand 11193 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((♯‘𝑃) − 1) − 𝑘))
7959oveq1d 7228 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8079adantr 484 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8176, 78, 803eqtr3d 2785 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8281fveq2d 6721 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8374, 82eqtrd 2777 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8463, 83eqeq12d 2753 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
8568, 84syl5bb 286 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
86 wkslem1 27695 . . . . . . . . . . . 12 (𝑥 = (((♯‘𝑃) − 2) − 𝑘) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
875, 1wlkprop 27699 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
8887simp3d 1146 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
8988adantr 484 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
9018nn0cnd 12152 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℂ)
9190adantr 484 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9291, 51, 52sub32d 11221 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝐹) − 1) − 𝑘))
9337adantr 484 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
9493oveq1d 7228 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
9592, 94eqtrd 2777 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝑃) − 2) − 𝑘))
96 ubmelm1fzo 13338 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9796adantl 485 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9895, 97eqeltrrd 2839 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 2) − 𝑘) ∈ (0..^(♯‘𝐹)))
9986, 89, 98rspcdva 3539 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
100 dfifp2 1065 . . . . . . . . . . 11 (if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))) ↔ (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
10199, 100sylib 221 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
102101simpld 498 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
10385, 102sylbid 243 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
104103imp 410 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
10565, 67, 1043eqtr4rd 2788 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {((reverse‘𝑃)‘𝑘)})
10642, 105eqtrd 2777 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)})
10785notbid 321 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
108101simprd 499 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
109107, 108sylbid 243 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
110109imp 410 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
111 prcom 4648 . . . . . . . 8 {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))}
11263, 83preq12d 4657 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
113111, 112eqtr3id 2792 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
114113adantr 484 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
11541adantr 484 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
116110, 114, 1153sstr4d 3948 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)))
117106, 116ifpimpda 1083 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
11828, 117syldan 594 . . 3 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
119118ralrimiva 3105 . 2 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
120 wlkv 27700 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
121120simp1d 1144 . . 3 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
1225, 1iswlkg 27701 . . 3 (𝐺 ∈ V → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
123121, 122syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
1244, 25, 119, 123mpbir3and 1344 1 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  if-wif 1063  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  wss 3866  {csn 4541  {cpr 4543   class class class wbr 5053  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732  cmin 11062  2c2 11885  0cn0 12090  cz 12176  ...cfz 13095  ..^cfzo 13238  chash 13896  Word cword 14069  reversecreverse 14323  Vtxcvtx 27087  iEdgciedg 27088  Walkscwlks 27684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-reverse 14324  df-wlks 27687
This theorem is referenced by:  revwlkb  32800  swrdwlk  32801
  Copyright terms: Public domain W3C validator