Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  revwlk Structured version   Visualization version   GIF version

Theorem revwlk 32484
Description: The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.)
Assertion
Ref Expression
revwlk (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))

Proof of Theorem revwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 27404 . . 3 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
3 revcl 14114 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
42, 3syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
5 eqid 2798 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
65wlkpwrd 27407 . . . 4 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
7 revcl 14114 . . . 4 (𝑃 ∈ Word (Vtx‘𝐺) → (reverse‘𝑃) ∈ Word (Vtx‘𝐺))
8 wrdf 13862 . . . 4 ((reverse‘𝑃) ∈ Word (Vtx‘𝐺) → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
96, 7, 83syl 18 . . 3 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
10 revlen 14115 . . . . . . 7 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
112, 10syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
1211oveq2d 7151 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0...(♯‘𝐹)))
13 wlklenvp1 27408 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
1413oveq2d 7151 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
15 revlen 14115 . . . . . . . 8 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
166, 15syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
1716oveq2d 7151 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝑃))) = (0..^(♯‘𝑃)))
18 wlkcl 27405 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
1918nn0zd 12073 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℤ)
20 fzval3 13101 . . . . . . 7 ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2119, 20syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2214, 17, 213eqtr4rd 2844 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^(♯‘(reverse‘𝑃))))
2312, 22eqtrd 2833 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0..^(♯‘(reverse‘𝑃))))
2423feq2d 6473 . . 3 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ↔ (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺)))
259, 24mpbird 260 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺))
2611oveq2d 7151 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝐹))) = (0..^(♯‘𝐹)))
2726eleq2d 2875 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝑘 ∈ (0..^(♯‘(reverse‘𝐹))) ↔ 𝑘 ∈ (0..^(♯‘𝐹))))
2827biimpa 480 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
29 revfv 14116 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
302, 29sylan 583 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
31 wlklenvm1 27411 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
3231oveq1d 7150 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = (((♯‘𝑃) − 1) − 1))
33 lencl 13876 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
3433nn0cnd 11945 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
35 sub1m1 11877 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
366, 34, 353syl 18 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
3732, 36eqtrd 2833 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
3837fvoveq1d 7157 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
3938adantr 484 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4030, 39eqtrd 2833 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4140fveq2d 6649 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
4241adantr 484 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
43 fzonn0p1p1 13111 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^(♯‘𝐹)) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4443adantl 485 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4514adantr 484 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
4644, 45eleqtrrd 2893 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^(♯‘𝑃)))
47 revfv 14116 . . . . . . . . . . 11 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑘 + 1) ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
486, 46, 47syl2an2r 684 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
49 elfzoelz 13033 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
5049zcnd 12076 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℂ)
5150adantl 485 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ ℂ)
52 1cnd 10625 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 1 ∈ ℂ)
5351, 52addcomd 10831 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) = (1 + 𝑘))
5453oveq2d 7151 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
556, 34syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) ∈ ℂ)
5655adantr 484 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝑃) ∈ ℂ)
5756, 52subcld 10986 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝑃) − 1) ∈ ℂ)
5857, 52, 51subsub4d 11017 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
5936oveq1d 7150 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6059adantr 484 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6154, 58, 603eqtr2d 2839 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 2) − 𝑘))
6261fveq2d 6649 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6348, 62eqtrd 2833 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6463sneqd 4537 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
6564adantr 484 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
66 sneq 4535 . . . . . . . 8 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
6766adantl 485 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
68 eqcom 2805 . . . . . . . . . 10 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘))
69 fzossfzop1 13110 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7018, 69syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7170, 14sseqtrrd 3956 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝑃)))
7271sselda 3915 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ (0..^(♯‘𝑃)))
73 revfv 14116 . . . . . . . . . . . . 13 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
746, 72, 73syl2an2r 684 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
7557, 51, 52sub32d 11018 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 𝑘) − 1) = ((((♯‘𝑃) − 1) − 1) − 𝑘))
7675oveq1d 7150 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1))
7757, 51subcld 10986 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) ∈ ℂ)
7877, 52npcand 10990 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((♯‘𝑃) − 1) − 𝑘))
7959oveq1d 7150 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8079adantr 484 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8176, 78, 803eqtr3d 2841 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8281fveq2d 6649 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8374, 82eqtrd 2833 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8463, 83eqeq12d 2814 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
8568, 84syl5bb 286 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
86 wkslem1 27397 . . . . . . . . . . . 12 (𝑥 = (((♯‘𝑃) − 2) − 𝑘) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
875, 1wlkprop 27401 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
8887simp3d 1141 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
8988adantr 484 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
9018nn0cnd 11945 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℂ)
9190adantr 484 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9291, 51, 52sub32d 11018 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝐹) − 1) − 𝑘))
9337adantr 484 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
9493oveq1d 7150 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
9592, 94eqtrd 2833 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝑃) − 2) − 𝑘))
96 ubmelm1fzo 13128 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9796adantl 485 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9895, 97eqeltrrd 2891 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 2) − 𝑘) ∈ (0..^(♯‘𝐹)))
9986, 89, 98rspcdva 3573 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
100 dfifp2 1060 . . . . . . . . . . 11 (if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))) ↔ (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
10199, 100sylib 221 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
102101simpld 498 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
10385, 102sylbid 243 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
104103imp 410 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
10565, 67, 1043eqtr4rd 2844 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {((reverse‘𝑃)‘𝑘)})
10642, 105eqtrd 2833 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)})
10785notbid 321 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
108101simprd 499 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
109107, 108sylbid 243 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
110109imp 410 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
111 prcom 4628 . . . . . . . 8 {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))}
11263, 83preq12d 4637 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
113111, 112syl5eqr 2847 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
114113adantr 484 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
11541adantr 484 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
116110, 114, 1153sstr4d 3962 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)))
117106, 116ifpimpda 1078 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
11828, 117syldan 594 . . 3 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
119118ralrimiva 3149 . 2 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
120 wlkv 27402 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
121120simp1d 1139 . . 3 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
1225, 1iswlkg 27403 . . 3 (𝐺 ∈ V → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
123121, 122syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
1244, 25, 119, 123mpbir3and 1339 1 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  if-wif 1058  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  {csn 4525  {cpr 4527   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  reversecreverse 14111  Vtxcvtx 26789  iEdgciedg 26790  Walkscwlks 27386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-reverse 14112  df-wlks 27389
This theorem is referenced by:  revwlkb  32485  swrdwlk  32486
  Copyright terms: Public domain W3C validator