Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  revwlk Structured version   Visualization version   GIF version

Theorem revwlk 35119
Description: The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.)
Assertion
Ref Expression
revwlk (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))

Proof of Theorem revwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 29549 . . 3 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
3 revcl 14733 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
42, 3syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
5 eqid 2730 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
65wlkpwrd 29552 . . . 4 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
7 revcl 14733 . . . 4 (𝑃 ∈ Word (Vtx‘𝐺) → (reverse‘𝑃) ∈ Word (Vtx‘𝐺))
8 wrdf 14490 . . . 4 ((reverse‘𝑃) ∈ Word (Vtx‘𝐺) → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
96, 7, 83syl 18 . . 3 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
10 revlen 14734 . . . . . . 7 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
112, 10syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
1211oveq2d 7406 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0...(♯‘𝐹)))
13 wlklenvp1 29553 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
1413oveq2d 7406 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
15 revlen 14734 . . . . . . . 8 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
166, 15syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
1716oveq2d 7406 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝑃))) = (0..^(♯‘𝑃)))
18 wlkcl 29550 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
1918nn0zd 12562 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℤ)
20 fzval3 13702 . . . . . . 7 ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2119, 20syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2214, 17, 213eqtr4rd 2776 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^(♯‘(reverse‘𝑃))))
2312, 22eqtrd 2765 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0..^(♯‘(reverse‘𝑃))))
2423feq2d 6675 . . 3 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ↔ (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺)))
259, 24mpbird 257 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺))
2611oveq2d 7406 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝐹))) = (0..^(♯‘𝐹)))
2726eleq2d 2815 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝑘 ∈ (0..^(♯‘(reverse‘𝐹))) ↔ 𝑘 ∈ (0..^(♯‘𝐹))))
2827biimpa 476 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
29 revfv 14735 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
302, 29sylan 580 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
31 wlklenvm1 29557 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
3231oveq1d 7405 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = (((♯‘𝑃) − 1) − 1))
33 lencl 14505 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
3433nn0cnd 12512 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
35 sub1m1 12441 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
366, 34, 353syl 18 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
3732, 36eqtrd 2765 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
3837fvoveq1d 7412 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
3938adantr 480 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4030, 39eqtrd 2765 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4140fveq2d 6865 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
4241adantr 480 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
43 fzonn0p1p1 13712 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^(♯‘𝐹)) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4443adantl 481 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4514adantr 480 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
4644, 45eleqtrrd 2832 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^(♯‘𝑃)))
47 revfv 14735 . . . . . . . . . . 11 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑘 + 1) ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
486, 46, 47syl2an2r 685 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
49 elfzoelz 13627 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
5049zcnd 12646 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℂ)
5150adantl 481 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ ℂ)
52 1cnd 11176 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 1 ∈ ℂ)
5351, 52addcomd 11383 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) = (1 + 𝑘))
5453oveq2d 7406 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
556, 34syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) ∈ ℂ)
5655adantr 480 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝑃) ∈ ℂ)
5756, 52subcld 11540 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝑃) − 1) ∈ ℂ)
5857, 52, 51subsub4d 11571 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
5936oveq1d 7405 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6059adantr 480 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6154, 58, 603eqtr2d 2771 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 2) − 𝑘))
6261fveq2d 6865 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6348, 62eqtrd 2765 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6463sneqd 4604 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
6564adantr 480 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
66 sneq 4602 . . . . . . . 8 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
6766adantl 481 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
68 eqcom 2737 . . . . . . . . . 10 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘))
69 fzossfzop1 13711 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7018, 69syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7170, 14sseqtrrd 3987 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝑃)))
7271sselda 3949 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ (0..^(♯‘𝑃)))
73 revfv 14735 . . . . . . . . . . . . 13 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
746, 72, 73syl2an2r 685 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
7557, 51, 52sub32d 11572 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 𝑘) − 1) = ((((♯‘𝑃) − 1) − 1) − 𝑘))
7675oveq1d 7405 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1))
7757, 51subcld 11540 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) ∈ ℂ)
7877, 52npcand 11544 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((♯‘𝑃) − 1) − 𝑘))
7959oveq1d 7405 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8176, 78, 803eqtr3d 2773 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8281fveq2d 6865 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8374, 82eqtrd 2765 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8463, 83eqeq12d 2746 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
8568, 84bitrid 283 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
86 wkslem1 29542 . . . . . . . . . . . 12 (𝑥 = (((♯‘𝑃) − 2) − 𝑘) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
875, 1wlkprop 29546 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
8887simp3d 1144 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
8988adantr 480 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
9018nn0cnd 12512 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℂ)
9190adantr 480 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9291, 51, 52sub32d 11572 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝐹) − 1) − 𝑘))
9337adantr 480 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
9493oveq1d 7405 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
9592, 94eqtrd 2765 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝑃) − 2) − 𝑘))
96 ubmelm1fzo 13731 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9796adantl 481 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9895, 97eqeltrrd 2830 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 2) − 𝑘) ∈ (0..^(♯‘𝐹)))
9986, 89, 98rspcdva 3592 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
100 dfifp2 1064 . . . . . . . . . . 11 (if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))) ↔ (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
10199, 100sylib 218 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
102101simpld 494 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
10385, 102sylbid 240 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
104103imp 406 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
10565, 67, 1043eqtr4rd 2776 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {((reverse‘𝑃)‘𝑘)})
10642, 105eqtrd 2765 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)})
10785notbid 318 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
108101simprd 495 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
109107, 108sylbid 240 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
110109imp 406 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
111 prcom 4699 . . . . . . . 8 {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))}
11263, 83preq12d 4708 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
113111, 112eqtr3id 2779 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
114113adantr 480 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
11541adantr 480 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
116110, 114, 1153sstr4d 4005 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)))
117106, 116ifpimpda 1080 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
11828, 117syldan 591 . . 3 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
119118ralrimiva 3126 . 2 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
120 wlkv 29547 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
121120simp1d 1142 . . 3 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
1225, 1iswlkg 29548 . . 3 (𝐺 ∈ V → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
123121, 122syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
1244, 25, 119, 123mpbir3and 1343 1 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  {csn 4592  {cpr 4594   class class class wbr 5110  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  2c2 12248  0cn0 12449  cz 12536  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  reversecreverse 14730  Vtxcvtx 28930  iEdgciedg 28931  Walkscwlks 29531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-reverse 14731  df-wlks 29534
This theorem is referenced by:  revwlkb  35120  swrdwlk  35121
  Copyright terms: Public domain W3C validator