Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  revwlk Structured version   Visualization version   GIF version

Theorem revwlk 33095
Description: The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.)
Assertion
Ref Expression
revwlk (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))

Proof of Theorem revwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 27990 . . 3 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
3 revcl 14483 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
42, 3syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹) ∈ Word dom (iEdg‘𝐺))
5 eqid 2739 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
65wlkpwrd 27993 . . . 4 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
7 revcl 14483 . . . 4 (𝑃 ∈ Word (Vtx‘𝐺) → (reverse‘𝑃) ∈ Word (Vtx‘𝐺))
8 wrdf 14231 . . . 4 ((reverse‘𝑃) ∈ Word (Vtx‘𝐺) → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
96, 7, 83syl 18 . . 3 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺))
10 revlen 14484 . . . . . . 7 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
112, 10syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝐹)) = (♯‘𝐹))
1211oveq2d 7300 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0...(♯‘𝐹)))
13 wlklenvp1 27994 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
1413oveq2d 7300 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
15 revlen 14484 . . . . . . . 8 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
166, 15syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘(reverse‘𝑃)) = (♯‘𝑃))
1716oveq2d 7300 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝑃))) = (0..^(♯‘𝑃)))
18 wlkcl 27991 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
1918nn0zd 12433 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℤ)
20 fzval3 13465 . . . . . . 7 ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2119, 20syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
2214, 17, 213eqtr4rd 2790 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = (0..^(♯‘(reverse‘𝑃))))
2312, 22eqtrd 2779 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘(reverse‘𝐹))) = (0..^(♯‘(reverse‘𝑃))))
2423feq2d 6595 . . 3 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ↔ (reverse‘𝑃):(0..^(♯‘(reverse‘𝑃)))⟶(Vtx‘𝐺)))
259, 24mpbird 256 . 2 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺))
2611oveq2d 7300 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘(reverse‘𝐹))) = (0..^(♯‘𝐹)))
2726eleq2d 2825 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝑘 ∈ (0..^(♯‘(reverse‘𝐹))) ↔ 𝑘 ∈ (0..^(♯‘𝐹))))
2827biimpa 477 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
29 revfv 14485 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
302, 29sylan 580 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝐹) − 1) − 𝑘)))
31 wlklenvm1 27998 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
3231oveq1d 7299 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = (((♯‘𝑃) − 1) − 1))
33 lencl 14245 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
3433nn0cnd 12304 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℂ)
35 sub1m1 12234 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
366, 34, 353syl 18 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
3732, 36eqtrd 2779 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
3837fvoveq1d 7306 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
3938adantr 481 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘(((♯‘𝐹) − 1) − 𝑘)) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4030, 39eqtrd 2779 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝐹)‘𝑘) = (𝐹‘(((♯‘𝑃) − 2) − 𝑘)))
4140fveq2d 6787 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
4241adantr 481 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
43 fzonn0p1p1 13475 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^(♯‘𝐹)) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4443adantl 482 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^((♯‘𝐹) + 1)))
4514adantr 481 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
4644, 45eleqtrrd 2843 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) ∈ (0..^(♯‘𝑃)))
47 revfv 14485 . . . . . . . . . . 11 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑘 + 1) ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
486, 46, 47syl2an2r 682 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))))
49 elfzoelz 13396 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
5049zcnd 12436 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^(♯‘𝐹)) → 𝑘 ∈ ℂ)
5150adantl 482 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ ℂ)
52 1cnd 10979 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 1 ∈ ℂ)
5351, 52addcomd 11186 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑘 + 1) = (1 + 𝑘))
5453oveq2d 7300 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
556, 34syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) ∈ ℂ)
5655adantr 481 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝑃) ∈ ℂ)
5756, 52subcld 11341 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝑃) − 1) ∈ ℂ)
5857, 52, 51subsub4d 11372 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 1) − (1 + 𝑘)))
5936oveq1d 7299 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6059adantr 481 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
6154, 58, 603eqtr2d 2785 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − (𝑘 + 1)) = (((♯‘𝑃) − 2) − 𝑘))
6261fveq2d 6787 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − (𝑘 + 1))) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6348, 62eqtrd 2779 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘(𝑘 + 1)) = (𝑃‘(((♯‘𝑃) − 2) − 𝑘)))
6463sneqd 4574 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
6564adantr 481 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
66 sneq 4572 . . . . . . . 8 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
6766adantl 482 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘(𝑘 + 1))})
68 eqcom 2746 . . . . . . . . . 10 (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘))
69 fzossfzop1 13474 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7018, 69syl 17 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
7170, 14sseqtrrd 3963 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝑃)))
7271sselda 3922 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → 𝑘 ∈ (0..^(♯‘𝑃)))
73 revfv 14485 . . . . . . . . . . . . 13 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0..^(♯‘𝑃))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
746, 72, 73syl2an2r 682 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘(((♯‘𝑃) − 1) − 𝑘)))
7557, 51, 52sub32d 11373 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((((♯‘𝑃) − 1) − 𝑘) − 1) = ((((♯‘𝑃) − 1) − 1) − 𝑘))
7675oveq1d 7299 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1))
7757, 51subcld 11341 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) ∈ ℂ)
7877, 52npcand 11345 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 𝑘) − 1) + 1) = (((♯‘𝑃) − 1) − 𝑘))
7959oveq1d 7299 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8079adantr 481 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((((♯‘𝑃) − 1) − 1) − 𝑘) + 1) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8176, 78, 803eqtr3d 2787 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 1) − 𝑘) = ((((♯‘𝑃) − 2) − 𝑘) + 1))
8281fveq2d 6787 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (𝑃‘(((♯‘𝑃) − 1) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8374, 82eqtrd 2779 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((reverse‘𝑃)‘𝑘) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)))
8463, 83eqeq12d 2755 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘(𝑘 + 1)) = ((reverse‘𝑃)‘𝑘) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
8568, 84syl5bb 283 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
86 wkslem1 27983 . . . . . . . . . . . 12 (𝑥 = (((♯‘𝑃) − 2) − 𝑘) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
875, 1wlkprop 27987 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
8887simp3d 1143 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
8988adantr 481 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
9018nn0cnd 12304 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℂ)
9190adantr 481 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9291, 51, 52sub32d 11373 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝐹) − 1) − 𝑘))
9337adantr 481 . . . . . . . . . . . . . . 15 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) − 1) = ((♯‘𝑃) − 2))
9493oveq1d 7299 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 1) − 𝑘) = (((♯‘𝑃) − 2) − 𝑘))
9592, 94eqtrd 2779 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) = (((♯‘𝑃) − 2) − 𝑘))
96 ubmelm1fzo 13492 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9796adantl 482 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝐹) − 𝑘) − 1) ∈ (0..^(♯‘𝐹)))
9895, 97eqeltrrd 2841 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((♯‘𝑃) − 2) − 𝑘) ∈ (0..^(♯‘𝐹)))
9986, 89, 98rspcdva 3563 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
100 dfifp2 1062 . . . . . . . . . . 11 (if-((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)), ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}, {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))) ↔ (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
10199, 100sylib 217 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}) ∧ (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))))
102101simpld 495 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ((𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
10385, 102sylbid 239 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))}))
104103imp 407 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘))})
10565, 67, 1043eqtr4rd 2790 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))) = {((reverse‘𝑃)‘𝑘)})
10642, 105eqtrd 2779 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)})
10785notbid 318 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) ↔ ¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))))
108101simprd 496 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ (𝑃‘(((♯‘𝑃) − 2) − 𝑘)) = (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
109107, 108sylbid 239 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → (¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘)))))
110109imp 407 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
111 prcom 4669 . . . . . . . 8 {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))}
11263, 83preq12d 4678 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘(𝑘 + 1)), ((reverse‘𝑃)‘𝑘)} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
113111, 112eqtr3id 2793 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
114113adantr 481 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} = {(𝑃‘(((♯‘𝑃) − 2) − 𝑘)), (𝑃‘((((♯‘𝑃) − 2) − 𝑘) + 1))})
11541adantr 481 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘(((♯‘𝑃) − 2) − 𝑘))))
116110, 114, 1153sstr4d 3969 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ ¬ ((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1))) → {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)))
117106, 116ifpimpda 1080 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
11828, 117syldan 591 . . 3 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))) → if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
119118ralrimiva 3104 . 2 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))
120 wlkv 27988 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
121120simp1d 1141 . . 3 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
1225, 1iswlkg 27989 . . 3 (𝐺 ∈ V → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
123121, 122syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → ((reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃) ↔ ((reverse‘𝐹) ∈ Word dom (iEdg‘𝐺) ∧ (reverse‘𝑃):(0...(♯‘(reverse‘𝐹)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(reverse‘𝐹)))if-(((reverse‘𝑃)‘𝑘) = ((reverse‘𝑃)‘(𝑘 + 1)), ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘)) = {((reverse‘𝑃)‘𝑘)}, {((reverse‘𝑃)‘𝑘), ((reverse‘𝑃)‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((reverse‘𝐹)‘𝑘))))))
1244, 25, 119, 123mpbir3and 1341 1 (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060  w3a 1086   = wceq 1539  wcel 2107  wral 3065  Vcvv 3433  wss 3888  {csn 4562  {cpr 4564   class class class wbr 5075  dom cdm 5590  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  0cc0 10880  1c1 10881   + caddc 10883  cmin 11214  2c2 12037  0cn0 12242  cz 12328  ...cfz 13248  ..^cfzo 13391  chash 14053  Word cword 14226  reversecreverse 14480  Vtxcvtx 27375  iEdgciedg 27376  Walkscwlks 27972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-fzo 13392  df-hash 14054  df-word 14227  df-reverse 14481  df-wlks 27975
This theorem is referenced by:  revwlkb  33096  swrdwlk  33097
  Copyright terms: Public domain W3C validator