Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem4 Structured version   Visualization version   GIF version

Theorem 1wlkdlem4 27935
 Description: Lemma 4 for 1wlkd 27936. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
Assertion
Ref Expression
1wlkdlem4 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem 1wlkdlem4
StepHypRef Expression
1 1wlkd.f . . . . . . . . . 10 𝐹 = ⟨“𝐽”⟩
21fveq1i 6647 . . . . . . . . 9 (𝐹‘0) = (⟨“𝐽”⟩‘0)
3 1wlkd.p . . . . . . . . . . . 12 𝑃 = ⟨“𝑋𝑌”⟩
4 1wlkd.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
5 1wlkd.y . . . . . . . . . . . 12 (𝜑𝑌𝑉)
6 1wlkd.l . . . . . . . . . . . 12 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
7 1wlkd.j . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
83, 1, 4, 5, 6, 71wlkdlem2 27933 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐼𝐽))
98elfvexd 6680 . . . . . . . . . 10 (𝜑𝐽 ∈ V)
10 s1fv 13958 . . . . . . . . . 10 (𝐽 ∈ V → (⟨“𝐽”⟩‘0) = 𝐽)
119, 10syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐽”⟩‘0) = 𝐽)
122, 11syl5eq 2845 . . . . . . . 8 (𝜑 → (𝐹‘0) = 𝐽)
1312fveq2d 6650 . . . . . . 7 (𝜑 → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1413adantr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1514, 6eqtrd 2833 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = {𝑋})
16 df-ne 2988 . . . . . . 7 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
1716, 7sylan2br 597 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1813adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1917, 18sseqtrrd 3956 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))
2015, 19ifpimpda 1078 . . . 4 (𝜑 → if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
213fveq1i 6647 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
22 s2fv0 14243 . . . . . . 7 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
234, 22syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
2421, 23syl5eq 2845 . . . . 5 (𝜑 → (𝑃‘0) = 𝑋)
253fveq1i 6647 . . . . . 6 (𝑃‘1) = (⟨“𝑋𝑌”⟩‘1)
26 s2fv1 14244 . . . . . . 7 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
275, 26syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2825, 27syl5eq 2845 . . . . 5 (𝜑 → (𝑃‘1) = 𝑌)
29 eqeq12 2812 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝑃‘0) = (𝑃‘1) ↔ 𝑋 = 𝑌))
30 sneq 4535 . . . . . . . 8 ((𝑃‘0) = 𝑋 → {(𝑃‘0)} = {𝑋})
3130adantr 484 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0)} = {𝑋})
3231eqeq2d 2809 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0)} ↔ (𝐼‘(𝐹‘0)) = {𝑋}))
33 preq12 4631 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌})
3433sseq1d 3946 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
3529, 32, 34ifpbi123d 1075 . . . . 5 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3624, 28, 35syl2anc 587 . . . 4 (𝜑 → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3720, 36mpbird 260 . . 3 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
38 c0ex 10627 . . . 4 0 ∈ V
39 oveq1 7143 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
40 0p1e1 11750 . . . . . 6 (0 + 1) = 1
4139, 40eqtrdi 2849 . . . . 5 (𝑘 = 0 → (𝑘 + 1) = 1)
42 wkslem2 27408 . . . . 5 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4341, 42mpdan 686 . . . 4 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4438, 43ralsn 4579 . . 3 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
4537, 44sylibr 237 . 2 (𝜑 → ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
461fveq2i 6649 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽”⟩)
47 s1len 13954 . . . . . . 7 (♯‘⟨“𝐽”⟩) = 1
4846, 47eqtri 2821 . . . . . 6 (♯‘𝐹) = 1
4948oveq2i 7147 . . . . 5 (0..^(♯‘𝐹)) = (0..^1)
50 fzo01 13117 . . . . 5 (0..^1) = {0}
5149, 50eqtri 2821 . . . 4 (0..^(♯‘𝐹)) = {0}
5251a1i 11 . . 3 (𝜑 → (0..^(♯‘𝐹)) = {0})
5352raleqdv 3364 . 2 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5445, 53mpbird 260 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  if-wif 1058   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  Vcvv 3441   ⊆ wss 3881  {csn 4525  {cpr 4527  ‘cfv 6325  (class class class)co 7136  0cc0 10529  1c1 10530   + caddc 10532  ..^cfzo 13031  ♯chash 13689  ⟨“cs1 13943  ⟨“cs2 14197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-hash 13690  df-word 13861  df-concat 13917  df-s1 13944  df-s2 14204 This theorem is referenced by:  1wlkd  27936
 Copyright terms: Public domain W3C validator