MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem4 Structured version   Visualization version   GIF version

Theorem 1wlkdlem4 29390
Description: Lemma 4 for 1wlkd 29391. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
Assertion
Ref Expression
1wlkdlem4 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem 1wlkdlem4
StepHypRef Expression
1 1wlkd.f . . . . . . . . . 10 𝐹 = ⟨“𝐽”⟩
21fveq1i 6892 . . . . . . . . 9 (𝐹‘0) = (⟨“𝐽”⟩‘0)
3 1wlkd.p . . . . . . . . . . . 12 𝑃 = ⟨“𝑋𝑌”⟩
4 1wlkd.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
5 1wlkd.y . . . . . . . . . . . 12 (𝜑𝑌𝑉)
6 1wlkd.l . . . . . . . . . . . 12 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
7 1wlkd.j . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
83, 1, 4, 5, 6, 71wlkdlem2 29388 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐼𝐽))
98elfvexd 6930 . . . . . . . . . 10 (𝜑𝐽 ∈ V)
10 s1fv 14559 . . . . . . . . . 10 (𝐽 ∈ V → (⟨“𝐽”⟩‘0) = 𝐽)
119, 10syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐽”⟩‘0) = 𝐽)
122, 11eqtrid 2784 . . . . . . . 8 (𝜑 → (𝐹‘0) = 𝐽)
1312fveq2d 6895 . . . . . . 7 (𝜑 → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1413adantr 481 . . . . . 6 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1514, 6eqtrd 2772 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = {𝑋})
16 df-ne 2941 . . . . . . 7 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
1716, 7sylan2br 595 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1813adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1917, 18sseqtrrd 4023 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))
2015, 19ifpimpda 1081 . . . 4 (𝜑 → if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
213fveq1i 6892 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
22 s2fv0 14837 . . . . . . 7 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
234, 22syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
2421, 23eqtrid 2784 . . . . 5 (𝜑 → (𝑃‘0) = 𝑋)
253fveq1i 6892 . . . . . 6 (𝑃‘1) = (⟨“𝑋𝑌”⟩‘1)
26 s2fv1 14838 . . . . . . 7 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
275, 26syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2825, 27eqtrid 2784 . . . . 5 (𝜑 → (𝑃‘1) = 𝑌)
29 eqeq12 2749 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝑃‘0) = (𝑃‘1) ↔ 𝑋 = 𝑌))
30 sneq 4638 . . . . . . . 8 ((𝑃‘0) = 𝑋 → {(𝑃‘0)} = {𝑋})
3130adantr 481 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0)} = {𝑋})
3231eqeq2d 2743 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0)} ↔ (𝐼‘(𝐹‘0)) = {𝑋}))
33 preq12 4739 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌})
3433sseq1d 4013 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
3529, 32, 34ifpbi123d 1078 . . . . 5 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3624, 28, 35syl2anc 584 . . . 4 (𝜑 → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3720, 36mpbird 256 . . 3 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
38 c0ex 11207 . . . 4 0 ∈ V
39 oveq1 7415 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
40 0p1e1 12333 . . . . . 6 (0 + 1) = 1
4139, 40eqtrdi 2788 . . . . 5 (𝑘 = 0 → (𝑘 + 1) = 1)
42 wkslem2 28862 . . . . 5 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4341, 42mpdan 685 . . . 4 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4438, 43ralsn 4685 . . 3 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
4537, 44sylibr 233 . 2 (𝜑 → ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
461fveq2i 6894 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽”⟩)
47 s1len 14555 . . . . . . 7 (♯‘⟨“𝐽”⟩) = 1
4846, 47eqtri 2760 . . . . . 6 (♯‘𝐹) = 1
4948oveq2i 7419 . . . . 5 (0..^(♯‘𝐹)) = (0..^1)
50 fzo01 13713 . . . . 5 (0..^1) = {0}
5149, 50eqtri 2760 . . . 4 (0..^(♯‘𝐹)) = {0}
5251a1i 11 . . 3 (𝜑 → (0..^(♯‘𝐹)) = {0})
5352raleqdv 3325 . 2 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5445, 53mpbird 256 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1061   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  wss 3948  {csn 4628  {cpr 4630  cfv 6543  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112  ..^cfzo 13626  chash 14289  ⟨“cs1 14544  ⟨“cs2 14791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-concat 14520  df-s1 14545  df-s2 14798
This theorem is referenced by:  1wlkd  29391
  Copyright terms: Public domain W3C validator