MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem4 Structured version   Visualization version   GIF version

Theorem 1wlkdlem4 27921
Description: Lemma 4 for 1wlkd 27922. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
Assertion
Ref Expression
1wlkdlem4 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem 1wlkdlem4
StepHypRef Expression
1 1wlkd.f . . . . . . . . . 10 𝐹 = ⟨“𝐽”⟩
21fveq1i 6673 . . . . . . . . 9 (𝐹‘0) = (⟨“𝐽”⟩‘0)
3 1wlkd.p . . . . . . . . . . . 12 𝑃 = ⟨“𝑋𝑌”⟩
4 1wlkd.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
5 1wlkd.y . . . . . . . . . . . 12 (𝜑𝑌𝑉)
6 1wlkd.l . . . . . . . . . . . 12 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
7 1wlkd.j . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
83, 1, 4, 5, 6, 71wlkdlem2 27919 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐼𝐽))
98elfvexd 6706 . . . . . . . . . 10 (𝜑𝐽 ∈ V)
10 s1fv 13966 . . . . . . . . . 10 (𝐽 ∈ V → (⟨“𝐽”⟩‘0) = 𝐽)
119, 10syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐽”⟩‘0) = 𝐽)
122, 11syl5eq 2870 . . . . . . . 8 (𝜑 → (𝐹‘0) = 𝐽)
1312fveq2d 6676 . . . . . . 7 (𝜑 → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1413adantr 483 . . . . . 6 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1514, 6eqtrd 2858 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = {𝑋})
16 df-ne 3019 . . . . . . 7 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
1716, 7sylan2br 596 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1813adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1917, 18sseqtrrd 4010 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))
2015, 19ifpimpda 1074 . . . 4 (𝜑 → if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
213fveq1i 6673 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
22 s2fv0 14251 . . . . . . 7 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
234, 22syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
2421, 23syl5eq 2870 . . . . 5 (𝜑 → (𝑃‘0) = 𝑋)
253fveq1i 6673 . . . . . 6 (𝑃‘1) = (⟨“𝑋𝑌”⟩‘1)
26 s2fv1 14252 . . . . . . 7 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
275, 26syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2825, 27syl5eq 2870 . . . . 5 (𝜑 → (𝑃‘1) = 𝑌)
29 eqeq12 2837 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝑃‘0) = (𝑃‘1) ↔ 𝑋 = 𝑌))
30 sneq 4579 . . . . . . . 8 ((𝑃‘0) = 𝑋 → {(𝑃‘0)} = {𝑋})
3130adantr 483 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0)} = {𝑋})
3231eqeq2d 2834 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0)} ↔ (𝐼‘(𝐹‘0)) = {𝑋}))
33 preq12 4673 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌})
3433sseq1d 4000 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
3529, 32, 34ifpbi123d 1072 . . . . 5 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3624, 28, 35syl2anc 586 . . . 4 (𝜑 → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3720, 36mpbird 259 . . 3 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
38 c0ex 10637 . . . 4 0 ∈ V
39 oveq1 7165 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
40 0p1e1 11762 . . . . . 6 (0 + 1) = 1
4139, 40syl6eq 2874 . . . . 5 (𝑘 = 0 → (𝑘 + 1) = 1)
42 wkslem2 27392 . . . . 5 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4341, 42mpdan 685 . . . 4 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4438, 43ralsn 4621 . . 3 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
4537, 44sylibr 236 . 2 (𝜑 → ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
461fveq2i 6675 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽”⟩)
47 s1len 13962 . . . . . . 7 (♯‘⟨“𝐽”⟩) = 1
4846, 47eqtri 2846 . . . . . 6 (♯‘𝐹) = 1
4948oveq2i 7169 . . . . 5 (0..^(♯‘𝐹)) = (0..^1)
50 fzo01 13122 . . . . 5 (0..^1) = {0}
5149, 50eqtri 2846 . . . 4 (0..^(♯‘𝐹)) = {0}
5251a1i 11 . . 3 (𝜑 → (0..^(♯‘𝐹)) = {0})
5352raleqdv 3417 . 2 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5445, 53mpbird 259 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  if-wif 1057   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  wss 3938  {csn 4569  {cpr 4571  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  ..^cfzo 13036  chash 13693  ⟨“cs1 13951  ⟨“cs2 14205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212
This theorem is referenced by:  1wlkd  27922
  Copyright terms: Public domain W3C validator