MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem4 Structured version   Visualization version   GIF version

Theorem 1wlkdlem4 28504
Description: Lemma 4 for 1wlkd 28505. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
Assertion
Ref Expression
1wlkdlem4 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem 1wlkdlem4
StepHypRef Expression
1 1wlkd.f . . . . . . . . . 10 𝐹 = ⟨“𝐽”⟩
21fveq1i 6775 . . . . . . . . 9 (𝐹‘0) = (⟨“𝐽”⟩‘0)
3 1wlkd.p . . . . . . . . . . . 12 𝑃 = ⟨“𝑋𝑌”⟩
4 1wlkd.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
5 1wlkd.y . . . . . . . . . . . 12 (𝜑𝑌𝑉)
6 1wlkd.l . . . . . . . . . . . 12 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
7 1wlkd.j . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
83, 1, 4, 5, 6, 71wlkdlem2 28502 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐼𝐽))
98elfvexd 6808 . . . . . . . . . 10 (𝜑𝐽 ∈ V)
10 s1fv 14315 . . . . . . . . . 10 (𝐽 ∈ V → (⟨“𝐽”⟩‘0) = 𝐽)
119, 10syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐽”⟩‘0) = 𝐽)
122, 11eqtrid 2790 . . . . . . . 8 (𝜑 → (𝐹‘0) = 𝐽)
1312fveq2d 6778 . . . . . . 7 (𝜑 → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1413adantr 481 . . . . . 6 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1514, 6eqtrd 2778 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = {𝑋})
16 df-ne 2944 . . . . . . 7 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
1716, 7sylan2br 595 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1813adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
1917, 18sseqtrrd 3962 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))
2015, 19ifpimpda 1080 . . . 4 (𝜑 → if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
213fveq1i 6775 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
22 s2fv0 14600 . . . . . . 7 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
234, 22syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
2421, 23eqtrid 2790 . . . . 5 (𝜑 → (𝑃‘0) = 𝑋)
253fveq1i 6775 . . . . . 6 (𝑃‘1) = (⟨“𝑋𝑌”⟩‘1)
26 s2fv1 14601 . . . . . . 7 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
275, 26syl 17 . . . . . 6 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2825, 27eqtrid 2790 . . . . 5 (𝜑 → (𝑃‘1) = 𝑌)
29 eqeq12 2755 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝑃‘0) = (𝑃‘1) ↔ 𝑋 = 𝑌))
30 sneq 4571 . . . . . . . 8 ((𝑃‘0) = 𝑋 → {(𝑃‘0)} = {𝑋})
3130adantr 481 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0)} = {𝑋})
3231eqeq2d 2749 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0)} ↔ (𝐼‘(𝐹‘0)) = {𝑋}))
33 preq12 4671 . . . . . . 7 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌})
3433sseq1d 3952 . . . . . 6 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))
3529, 32, 34ifpbi123d 1077 . . . . 5 (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3624, 28, 35syl2anc 584 . . . 4 (𝜑 → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))))
3720, 36mpbird 256 . . 3 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
38 c0ex 10969 . . . 4 0 ∈ V
39 oveq1 7282 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
40 0p1e1 12095 . . . . . 6 (0 + 1) = 1
4139, 40eqtrdi 2794 . . . . 5 (𝑘 = 0 → (𝑘 + 1) = 1)
42 wkslem2 27975 . . . . 5 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4341, 42mpdan 684 . . . 4 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
4438, 43ralsn 4617 . . 3 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
4537, 44sylibr 233 . 2 (𝜑 → ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
461fveq2i 6777 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽”⟩)
47 s1len 14311 . . . . . . 7 (♯‘⟨“𝐽”⟩) = 1
4846, 47eqtri 2766 . . . . . 6 (♯‘𝐹) = 1
4948oveq2i 7286 . . . . 5 (0..^(♯‘𝐹)) = (0..^1)
50 fzo01 13469 . . . . 5 (0..^1) = {0}
5149, 50eqtri 2766 . . . 4 (0..^(♯‘𝐹)) = {0}
5251a1i 11 . . 3 (𝜑 → (0..^(♯‘𝐹)) = {0})
5352raleqdv 3348 . 2 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5445, 53mpbird 256 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  ..^cfzo 13382  chash 14044  ⟨“cs1 14300  ⟨“cs2 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561
This theorem is referenced by:  1wlkd  28505
  Copyright terms: Public domain W3C validator