Proof of Theorem 1wlkdlem4
| Step | Hyp | Ref
| Expression |
| 1 | | 1wlkd.f |
. . . . . . . . . 10
⊢ 𝐹 = 〈“𝐽”〉 |
| 2 | 1 | fveq1i 6888 |
. . . . . . . . 9
⊢ (𝐹‘0) = (〈“𝐽”〉‘0) |
| 3 | | 1wlkd.p |
. . . . . . . . . . . 12
⊢ 𝑃 = 〈“𝑋𝑌”〉 |
| 4 | | 1wlkd.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 5 | | 1wlkd.y |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 6 | | 1wlkd.l |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
| 7 | | 1wlkd.j |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
| 8 | 3, 1, 4, 5, 6, 7 | 1wlkdlem2 30104 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) |
| 9 | 8 | elfvexd 6926 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ V) |
| 10 | | s1fv 14631 |
. . . . . . . . . 10
⊢ (𝐽 ∈ V →
(〈“𝐽”〉‘0) = 𝐽) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (〈“𝐽”〉‘0) = 𝐽) |
| 12 | 2, 11 | eqtrid 2781 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) = 𝐽) |
| 13 | 12 | fveq2d 6891 |
. . . . . . 7
⊢ (𝜑 → (𝐼‘(𝐹‘0)) = (𝐼‘𝐽)) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼‘𝐽)) |
| 15 | 14, 6 | eqtrd 2769 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = {𝑋}) |
| 16 | | df-ne 2932 |
. . . . . . 7
⊢ (𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌) |
| 17 | 16, 7 | sylan2br 595 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
| 18 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 = 𝑌) → (𝐼‘(𝐹‘0)) = (𝐼‘𝐽)) |
| 19 | 17, 18 | sseqtrrd 4003 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 = 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))) |
| 20 | 15, 19 | ifpimpda 1080 |
. . . 4
⊢ (𝜑 → if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))) |
| 21 | 3 | fveq1i 6888 |
. . . . . 6
⊢ (𝑃‘0) = (〈“𝑋𝑌”〉‘0) |
| 22 | | s2fv0 14909 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) |
| 23 | 4, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (〈“𝑋𝑌”〉‘0) = 𝑋) |
| 24 | 21, 23 | eqtrid 2781 |
. . . . 5
⊢ (𝜑 → (𝑃‘0) = 𝑋) |
| 25 | 3 | fveq1i 6888 |
. . . . . 6
⊢ (𝑃‘1) = (〈“𝑋𝑌”〉‘1) |
| 26 | | s2fv1 14910 |
. . . . . . 7
⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) |
| 27 | 5, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → (〈“𝑋𝑌”〉‘1) = 𝑌) |
| 28 | 25, 27 | eqtrid 2781 |
. . . . 5
⊢ (𝜑 → (𝑃‘1) = 𝑌) |
| 29 | | eqeq12 2751 |
. . . . . 6
⊢ (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝑃‘0) = (𝑃‘1) ↔ 𝑋 = 𝑌)) |
| 30 | | sneq 4618 |
. . . . . . . 8
⊢ ((𝑃‘0) = 𝑋 → {(𝑃‘0)} = {𝑋}) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0)} = {𝑋}) |
| 32 | 31 | eqeq2d 2745 |
. . . . . 6
⊢ (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0)} ↔ (𝐼‘(𝐹‘0)) = {𝑋})) |
| 33 | | preq12 4717 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌}) |
| 34 | 33 | sseq1d 3997 |
. . . . . 6
⊢ (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0)))) |
| 35 | 29, 32, 34 | ifpbi123d 1078 |
. . . . 5
⊢ (((𝑃‘0) = 𝑋 ∧ (𝑃‘1) = 𝑌) → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))) |
| 36 | 24, 28, 35 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-(𝑋 = 𝑌, (𝐼‘(𝐹‘0)) = {𝑋}, {𝑋, 𝑌} ⊆ (𝐼‘(𝐹‘0))))) |
| 37 | 20, 36 | mpbird 257 |
. . 3
⊢ (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))) |
| 38 | | c0ex 11238 |
. . . 4
⊢ 0 ∈
V |
| 39 | | oveq1 7421 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
| 40 | | 0p1e1 12371 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 41 | 39, 40 | eqtrdi 2785 |
. . . . 5
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
| 42 | | wkslem2 29573 |
. . . . 5
⊢ ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))) |
| 43 | 41, 42 | mpdan 687 |
. . . 4
⊢ (𝑘 = 0 → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))) |
| 44 | 38, 43 | ralsn 4663 |
. . 3
⊢
(∀𝑘 ∈
{0}if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))) |
| 45 | 37, 44 | sylibr 234 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ {0}if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 46 | 1 | fveq2i 6890 |
. . . . . 6
⊢
(♯‘𝐹) =
(♯‘〈“𝐽”〉) |
| 47 | | s1len 14627 |
. . . . . 6
⊢
(♯‘〈“𝐽”〉) = 1 |
| 48 | 46, 47 | eqtri 2757 |
. . . . 5
⊢
(♯‘𝐹) =
1 |
| 49 | 48 | oveq2i 7425 |
. . . 4
⊢
(0..^(♯‘𝐹)) = (0..^1) |
| 50 | | fzo01 13769 |
. . . 4
⊢ (0..^1) =
{0} |
| 51 | 49, 50 | eqtri 2757 |
. . 3
⊢
(0..^(♯‘𝐹)) = {0} |
| 52 | 51 | a1i 11 |
. 2
⊢ (𝜑 → (0..^(♯‘𝐹)) = {0}) |
| 53 | 45, 52 | raleqtrrdv 3314 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |