| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner01 | Structured version Visualization version GIF version | ||
| Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| prjspner01.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
| prjspner01.f | ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) |
| prjspner01.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| prjspner01.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
| prjspner01.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| prjspner01.s | ⊢ 𝑆 = (Base‘𝐾) |
| prjspner01.0 | ⊢ 0 = (0g‘𝐾) |
| prjspner01.i | ⊢ 𝐼 = (invr‘𝐾) |
| prjspner01.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| prjspner01.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| prjspner01.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prjspner01 | ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspner01.e | . . . . . . 7 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
| 2 | prjspner01.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
| 3 | prjspner01.b | . . . . . . 7 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 4 | prjspner01.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝐾) | |
| 5 | prjspner01.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | prjspner01.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 7 | 1, 2, 3, 4, 5, 6 | prjspner 42592 | . . . . . 6 ⊢ (𝜑 → ∼ Er 𝐵) |
| 8 | prjspner01.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 7, 8 | erref 8652 | . . . . 5 ⊢ (𝜑 → 𝑋 ∼ 𝑋) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘0) = 0 ) → 𝑋 ∼ 𝑋) |
| 11 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ∼ Er 𝐵) |
| 12 | prjspner01.0 | . . . . . 6 ⊢ 0 = (0g‘𝐾) | |
| 13 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝐾 ∈ DivRing) |
| 14 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ 𝐵) |
| 15 | ovexd 7388 | . . . . . . . . 9 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 16 | 8, 3 | eleqtrdi 2838 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 17 | 16 | eldifad 3917 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 18 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 19 | 2, 4, 18 | frlmbasf 21685 | . . . . . . . . 9 ⊢ (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶𝑆) |
| 20 | 15, 17, 19 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝑆) |
| 21 | prjspner01.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 22 | 0elfz 13545 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 24 | 20, 23 | ffvelcdmd 7023 | . . . . . . 7 ⊢ (𝜑 → (𝑋‘0) ∈ 𝑆) |
| 25 | neqne 2933 | . . . . . . 7 ⊢ (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 ) | |
| 26 | prjspner01.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐾) | |
| 27 | 4, 12, 26 | drnginvrcl 20656 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
| 28 | 6, 24, 25, 27 | syl2an3an 1424 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
| 29 | 4, 12, 26 | drnginvrn0 20657 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
| 30 | 6, 24, 25, 29 | syl2an3an 1424 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
| 31 | 1, 2, 3, 4, 5, 12, 13, 14, 28, 30 | prjspnvs 42593 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0)) · 𝑋) ∼ 𝑋) |
| 32 | 11, 31 | ersym 8644 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋)) |
| 33 | 10, 32 | ifpimpda 1080 | . . 3 ⊢ (𝜑 → if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 34 | brif2 42197 | . . 3 ⊢ (𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ↔ if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) | |
| 35 | 33, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 36 | prjspner01.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) | |
| 37 | fveq1 6825 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0)) | |
| 38 | 37 | eqeq1d 2731 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 )) |
| 39 | id 22 | . . . 4 ⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) | |
| 40 | 37 | fveq2d 6830 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0))) |
| 41 | 40, 39 | oveq12d 7371 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋)) |
| 42 | 38, 39, 41 | ifbieq12d 4507 | . . 3 ⊢ (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 43 | ovexd 7388 | . . . 4 ⊢ (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V) | |
| 44 | 8, 43 | ifexd 4527 | . . 3 ⊢ (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V) |
| 45 | 36, 42, 8, 44 | fvmptd3 6957 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 46 | 35, 45 | breqtrrd 5123 | 1 ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 if-wif 1062 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3438 ∖ cdif 3902 ifcif 4478 {csn 4579 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Er wer 8629 0cc0 11028 ℕ0cn0 12402 ...cfz 13428 Basecbs 17138 ·𝑠 cvsca 17183 0gc0g 17361 invrcinvr 20290 DivRingcdr 20632 freeLMod cfrlm 21671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-pws 17371 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-subrg 20473 df-drng 20634 df-lmod 20783 df-lss 20853 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 |
| This theorem is referenced by: prjspner1 42599 |
| Copyright terms: Public domain | W3C validator |