![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner01 | Structured version Visualization version GIF version |
Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
Ref | Expression |
---|---|
prjspner01.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspner01.f | ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) |
prjspner01.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspner01.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspner01.t | ⊢ · = ( ·𝑠 ‘𝑊) |
prjspner01.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspner01.0 | ⊢ 0 = (0g‘𝐾) |
prjspner01.i | ⊢ 𝐼 = (invr‘𝐾) |
prjspner01.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
prjspner01.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjspner01.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
prjspner01 | ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspner01.e | . . . . . . 7 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
2 | prjspner01.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
3 | prjspner01.b | . . . . . . 7 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
4 | prjspner01.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝐾) | |
5 | prjspner01.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | prjspner01.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
7 | 1, 2, 3, 4, 5, 6 | prjspner 42574 | . . . . . 6 ⊢ (𝜑 → ∼ Er 𝐵) |
8 | prjspner01.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 7, 8 | erref 8783 | . . . . 5 ⊢ (𝜑 → 𝑋 ∼ 𝑋) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘0) = 0 ) → 𝑋 ∼ 𝑋) |
11 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ∼ Er 𝐵) |
12 | prjspner01.0 | . . . . . 6 ⊢ 0 = (0g‘𝐾) | |
13 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝐾 ∈ DivRing) |
14 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ 𝐵) |
15 | ovexd 7483 | . . . . . . . . 9 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
16 | 8, 3 | eleqtrdi 2854 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
17 | 16 | eldifad 3988 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
18 | eqid 2740 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
19 | 2, 4, 18 | frlmbasf 21803 | . . . . . . . . 9 ⊢ (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶𝑆) |
20 | 15, 17, 19 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝑆) |
21 | prjspner01.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
22 | 0elfz 13681 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ (0...𝑁)) |
24 | 20, 23 | ffvelcdmd 7119 | . . . . . . 7 ⊢ (𝜑 → (𝑋‘0) ∈ 𝑆) |
25 | neqne 2954 | . . . . . . 7 ⊢ (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 ) | |
26 | prjspner01.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐾) | |
27 | 4, 12, 26 | drnginvrcl 20775 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
28 | 6, 24, 25, 27 | syl2an3an 1422 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
29 | 4, 12, 26 | drnginvrn0 20776 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
30 | 6, 24, 25, 29 | syl2an3an 1422 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
31 | 1, 2, 3, 4, 5, 12, 13, 14, 28, 30 | prjspnvs 42575 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0)) · 𝑋) ∼ 𝑋) |
32 | 11, 31 | ersym 8775 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋)) |
33 | 10, 32 | ifpimpda 1081 | . . 3 ⊢ (𝜑 → if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) |
34 | brif2 42217 | . . 3 ⊢ (𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ↔ if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) | |
35 | 33, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
36 | prjspner01.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) | |
37 | fveq1 6919 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0)) | |
38 | 37 | eqeq1d 2742 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 )) |
39 | id 22 | . . . 4 ⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) | |
40 | 37 | fveq2d 6924 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0))) |
41 | 40, 39 | oveq12d 7466 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋)) |
42 | 38, 39, 41 | ifbieq12d 4576 | . . 3 ⊢ (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
43 | ovexd 7483 | . . . 4 ⊢ (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V) | |
44 | 8, 43 | ifexd 4596 | . . 3 ⊢ (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V) |
45 | 36, 42, 8, 44 | fvmptd3 7052 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
46 | 35, 45 | breqtrrd 5194 | 1 ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 if-wif 1063 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ifcif 4548 {csn 4648 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Er wer 8760 0cc0 11184 ℕ0cn0 12553 ...cfz 13567 Basecbs 17258 ·𝑠 cvsca 17315 0gc0g 17499 invrcinvr 20413 DivRingcdr 20751 freeLMod cfrlm 21789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrg 20597 df-drng 20753 df-lmod 20882 df-lss 20953 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 |
This theorem is referenced by: prjspner1 42581 |
Copyright terms: Public domain | W3C validator |