![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner01 | Structured version Visualization version GIF version |
Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
Ref | Expression |
---|---|
prjspner01.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspner01.f | ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) |
prjspner01.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspner01.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspner01.t | ⊢ · = ( ·𝑠 ‘𝑊) |
prjspner01.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspner01.0 | ⊢ 0 = (0g‘𝐾) |
prjspner01.i | ⊢ 𝐼 = (invr‘𝐾) |
prjspner01.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
prjspner01.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjspner01.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
prjspner01 | ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspner01.e | . . . . . . 7 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
2 | prjspner01.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
3 | prjspner01.b | . . . . . . 7 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
4 | prjspner01.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝐾) | |
5 | prjspner01.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | prjspner01.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
7 | 1, 2, 3, 4, 5, 6 | prjspner 42273 | . . . . . 6 ⊢ (𝜑 → ∼ Er 𝐵) |
8 | prjspner01.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 7, 8 | erref 8754 | . . . . 5 ⊢ (𝜑 → 𝑋 ∼ 𝑋) |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘0) = 0 ) → 𝑋 ∼ 𝑋) |
11 | 7 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ∼ Er 𝐵) |
12 | prjspner01.0 | . . . . . 6 ⊢ 0 = (0g‘𝐾) | |
13 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝐾 ∈ DivRing) |
14 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ 𝐵) |
15 | ovexd 7459 | . . . . . . . . 9 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
16 | 8, 3 | eleqtrdi 2836 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
17 | 16 | eldifad 3959 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
18 | eqid 2726 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
19 | 2, 4, 18 | frlmbasf 21758 | . . . . . . . . 9 ⊢ (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶𝑆) |
20 | 15, 17, 19 | syl2anc 582 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝑆) |
21 | prjspner01.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
22 | 0elfz 13652 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ (0...𝑁)) |
24 | 20, 23 | ffvelcdmd 7099 | . . . . . . 7 ⊢ (𝜑 → (𝑋‘0) ∈ 𝑆) |
25 | neqne 2938 | . . . . . . 7 ⊢ (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 ) | |
26 | prjspner01.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐾) | |
27 | 4, 12, 26 | drnginvrcl 20731 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
28 | 6, 24, 25, 27 | syl2an3an 1419 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
29 | 4, 12, 26 | drnginvrn0 20732 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
30 | 6, 24, 25, 29 | syl2an3an 1419 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
31 | 1, 2, 3, 4, 5, 12, 13, 14, 28, 30 | prjspnvs 42274 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0)) · 𝑋) ∼ 𝑋) |
32 | 11, 31 | ersym 8746 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋)) |
33 | 10, 32 | ifpimpda 1078 | . . 3 ⊢ (𝜑 → if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) |
34 | brif2 41946 | . . 3 ⊢ (𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ↔ if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) | |
35 | 33, 34 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
36 | prjspner01.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) | |
37 | fveq1 6900 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0)) | |
38 | 37 | eqeq1d 2728 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 )) |
39 | id 22 | . . . 4 ⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) | |
40 | 37 | fveq2d 6905 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0))) |
41 | 40, 39 | oveq12d 7442 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋)) |
42 | 38, 39, 41 | ifbieq12d 4561 | . . 3 ⊢ (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
43 | ovexd 7459 | . . . 4 ⊢ (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V) | |
44 | 8, 43 | ifexd 4581 | . . 3 ⊢ (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V) |
45 | 36, 42, 8, 44 | fvmptd3 7032 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
46 | 35, 45 | breqtrrd 5181 | 1 ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 if-wif 1060 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 Vcvv 3462 ∖ cdif 3944 ifcif 4533 {csn 4633 class class class wbr 5153 {copab 5215 ↦ cmpt 5236 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 Er wer 8731 0cc0 11158 ℕ0cn0 12524 ...cfz 13538 Basecbs 17213 ·𝑠 cvsca 17270 0gc0g 17454 invrcinvr 20369 DivRingcdr 20707 freeLMod cfrlm 21744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-0g 17456 df-prds 17462 df-pws 17464 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-subrg 20553 df-drng 20709 df-lmod 20838 df-lss 20909 df-lvec 21081 df-sra 21151 df-rgmod 21152 df-dsmm 21730 df-frlm 21745 |
This theorem is referenced by: prjspner1 42280 |
Copyright terms: Public domain | W3C validator |