Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner01 | Structured version Visualization version GIF version |
Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
Ref | Expression |
---|---|
prjspner01.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspner01.f | ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) |
prjspner01.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspner01.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspner01.t | ⊢ · = ( ·𝑠 ‘𝑊) |
prjspner01.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspner01.0 | ⊢ 0 = (0g‘𝐾) |
prjspner01.i | ⊢ 𝐼 = (invr‘𝐾) |
prjspner01.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
prjspner01.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjspner01.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
prjspner01 | ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspner01.e | . . . . . . 7 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
2 | prjspner01.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
3 | prjspner01.b | . . . . . . 7 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
4 | prjspner01.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝐾) | |
5 | prjspner01.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | prjspner01.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
7 | 1, 2, 3, 4, 5, 6 | prjspner 40379 | . . . . . 6 ⊢ (𝜑 → ∼ Er 𝐵) |
8 | prjspner01.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 7, 8 | erref 8476 | . . . . 5 ⊢ (𝜑 → 𝑋 ∼ 𝑋) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘0) = 0 ) → 𝑋 ∼ 𝑋) |
11 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ∼ Er 𝐵) |
12 | prjspner01.0 | . . . . . 6 ⊢ 0 = (0g‘𝐾) | |
13 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝐾 ∈ DivRing) |
14 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ 𝐵) |
15 | ovexd 7290 | . . . . . . . . 9 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
16 | 8, 3 | eleqtrdi 2849 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
17 | 16 | eldifad 3895 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
18 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
19 | 2, 4, 18 | frlmbasf 20877 | . . . . . . . . 9 ⊢ (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶𝑆) |
20 | 15, 17, 19 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝑆) |
21 | prjspner01.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
22 | 0elfz 13282 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ (0...𝑁)) |
24 | 20, 23 | ffvelrnd 6944 | . . . . . . 7 ⊢ (𝜑 → (𝑋‘0) ∈ 𝑆) |
25 | neqne 2950 | . . . . . . 7 ⊢ (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 ) | |
26 | prjspner01.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐾) | |
27 | 4, 12, 26 | drnginvrcl 19923 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
28 | 6, 24, 25, 27 | syl2an3an 1420 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ 𝑆) |
29 | 4, 12, 26 | drnginvrn0 19924 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ 𝑆 ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
30 | 6, 24, 25, 29 | syl2an3an 1420 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ≠ 0 ) |
31 | 1, 2, 3, 4, 5, 12, 13, 14, 28, 30 | prjspnvs 40380 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0)) · 𝑋) ∼ 𝑋) |
32 | 11, 31 | ersym 8468 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋)) |
33 | 10, 32 | ifpimpda 1079 | . . 3 ⊢ (𝜑 → if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) |
34 | brif2 40125 | . . 3 ⊢ (𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ↔ if-((𝑋‘0) = 0 , 𝑋 ∼ 𝑋, 𝑋 ∼ ((𝐼‘(𝑋‘0)) · 𝑋))) | |
35 | 33, 34 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑋 ∼ if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
36 | prjspner01.f | . . 3 ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) | |
37 | fveq1 6755 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0)) | |
38 | 37 | eqeq1d 2740 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 )) |
39 | id 22 | . . . 4 ⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) | |
40 | 37 | fveq2d 6760 | . . . . 5 ⊢ (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0))) |
41 | 40, 39 | oveq12d 7273 | . . . 4 ⊢ (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋)) |
42 | 38, 39, 41 | ifbieq12d 4484 | . . 3 ⊢ (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
43 | ovexd 7290 | . . . 4 ⊢ (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V) | |
44 | 8, 43 | ifexd 4504 | . . 3 ⊢ (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V) |
45 | 36, 42, 8, 44 | fvmptd3 6880 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
46 | 35, 45 | breqtrrd 5098 | 1 ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 if-wif 1059 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ifcif 4456 {csn 4558 class class class wbr 5070 {copab 5132 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Er wer 8453 0cc0 10802 ℕ0cn0 12163 ...cfz 13168 Basecbs 16840 ·𝑠 cvsca 16892 0gc0g 17067 invrcinvr 19828 DivRingcdr 19906 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: prjspner1 40384 |
Copyright terms: Public domain | W3C validator |