![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner01 | Structured version Visualization version GIF version |
Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
Ref | Expression |
---|---|
prjspner01.e | โข โผ = {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ ๐ต โง ๐ฆ โ ๐ต) โง โ๐ โ ๐ ๐ฅ = (๐ ยท ๐ฆ))} |
prjspner01.f | โข ๐น = (๐ โ ๐ต โฆ if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐))) |
prjspner01.b | โข ๐ต = ((Baseโ๐) โ {(0gโ๐)}) |
prjspner01.w | โข ๐ = (๐พ freeLMod (0...๐)) |
prjspner01.t | โข ยท = ( ยท๐ โ๐) |
prjspner01.s | โข ๐ = (Baseโ๐พ) |
prjspner01.0 | โข 0 = (0gโ๐พ) |
prjspner01.i | โข ๐ผ = (invrโ๐พ) |
prjspner01.k | โข (๐ โ ๐พ โ DivRing) |
prjspner01.n | โข (๐ โ ๐ โ โ0) |
prjspner01.x | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
prjspner01 | โข (๐ โ ๐ โผ (๐นโ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspner01.e | . . . . . . 7 โข โผ = {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ ๐ต โง ๐ฆ โ ๐ต) โง โ๐ โ ๐ ๐ฅ = (๐ ยท ๐ฆ))} | |
2 | prjspner01.w | . . . . . . 7 โข ๐ = (๐พ freeLMod (0...๐)) | |
3 | prjspner01.b | . . . . . . 7 โข ๐ต = ((Baseโ๐) โ {(0gโ๐)}) | |
4 | prjspner01.s | . . . . . . 7 โข ๐ = (Baseโ๐พ) | |
5 | prjspner01.t | . . . . . . 7 โข ยท = ( ยท๐ โ๐) | |
6 | prjspner01.k | . . . . . . 7 โข (๐ โ ๐พ โ DivRing) | |
7 | 1, 2, 3, 4, 5, 6 | prjspner 41663 | . . . . . 6 โข (๐ โ โผ Er ๐ต) |
8 | prjspner01.x | . . . . . 6 โข (๐ โ ๐ โ ๐ต) | |
9 | 7, 8 | erref 8725 | . . . . 5 โข (๐ โ ๐ โผ ๐) |
10 | 9 | adantr 479 | . . . 4 โข ((๐ โง (๐โ0) = 0 ) โ ๐ โผ ๐) |
11 | 7 | adantr 479 | . . . . 5 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ โผ Er ๐ต) |
12 | prjspner01.0 | . . . . . 6 โข 0 = (0gโ๐พ) | |
13 | 6 | adantr 479 | . . . . . 6 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ ๐พ โ DivRing) |
14 | 8 | adantr 479 | . . . . . 6 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ ๐ โ ๐ต) |
15 | ovexd 7446 | . . . . . . . . 9 โข (๐ โ (0...๐) โ V) | |
16 | 8, 3 | eleqtrdi 2841 | . . . . . . . . . 10 โข (๐ โ ๐ โ ((Baseโ๐) โ {(0gโ๐)})) |
17 | 16 | eldifad 3959 | . . . . . . . . 9 โข (๐ โ ๐ โ (Baseโ๐)) |
18 | eqid 2730 | . . . . . . . . . 10 โข (Baseโ๐) = (Baseโ๐) | |
19 | 2, 4, 18 | frlmbasf 21534 | . . . . . . . . 9 โข (((0...๐) โ V โง ๐ โ (Baseโ๐)) โ ๐:(0...๐)โถ๐) |
20 | 15, 17, 19 | syl2anc 582 | . . . . . . . 8 โข (๐ โ ๐:(0...๐)โถ๐) |
21 | prjspner01.n | . . . . . . . . 9 โข (๐ โ ๐ โ โ0) | |
22 | 0elfz 13602 | . . . . . . . . 9 โข (๐ โ โ0 โ 0 โ (0...๐)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 โข (๐ โ 0 โ (0...๐)) |
24 | 20, 23 | ffvelcdmd 7086 | . . . . . . 7 โข (๐ โ (๐โ0) โ ๐) |
25 | neqne 2946 | . . . . . . 7 โข (ยฌ (๐โ0) = 0 โ (๐โ0) โ 0 ) | |
26 | prjspner01.i | . . . . . . . 8 โข ๐ผ = (invrโ๐พ) | |
27 | 4, 12, 26 | drnginvrcl 20522 | . . . . . . 7 โข ((๐พ โ DivRing โง (๐โ0) โ ๐ โง (๐โ0) โ 0 ) โ (๐ผโ(๐โ0)) โ ๐) |
28 | 6, 24, 25, 27 | syl2an3an 1420 | . . . . . 6 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ (๐ผโ(๐โ0)) โ ๐) |
29 | 4, 12, 26 | drnginvrn0 20523 | . . . . . . 7 โข ((๐พ โ DivRing โง (๐โ0) โ ๐ โง (๐โ0) โ 0 ) โ (๐ผโ(๐โ0)) โ 0 ) |
30 | 6, 24, 25, 29 | syl2an3an 1420 | . . . . . 6 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ (๐ผโ(๐โ0)) โ 0 ) |
31 | 1, 2, 3, 4, 5, 12, 13, 14, 28, 30 | prjspnvs 41664 | . . . . 5 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ ((๐ผโ(๐โ0)) ยท ๐) โผ ๐) |
32 | 11, 31 | ersym 8717 | . . . 4 โข ((๐ โง ยฌ (๐โ0) = 0 ) โ ๐ โผ ((๐ผโ(๐โ0)) ยท ๐)) |
33 | 10, 32 | ifpimpda 1079 | . . 3 โข (๐ โ if-((๐โ0) = 0 , ๐ โผ ๐, ๐ โผ ((๐ผโ(๐โ0)) ยท ๐))) |
34 | brif2 41348 | . . 3 โข (๐ โผ if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐)) โ if-((๐โ0) = 0 , ๐ โผ ๐, ๐ โผ ((๐ผโ(๐โ0)) ยท ๐))) | |
35 | 33, 34 | sylibr 233 | . 2 โข (๐ โ ๐ โผ if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐))) |
36 | prjspner01.f | . . 3 โข ๐น = (๐ โ ๐ต โฆ if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐))) | |
37 | fveq1 6889 | . . . . 5 โข (๐ = ๐ โ (๐โ0) = (๐โ0)) | |
38 | 37 | eqeq1d 2732 | . . . 4 โข (๐ = ๐ โ ((๐โ0) = 0 โ (๐โ0) = 0 )) |
39 | id 22 | . . . 4 โข (๐ = ๐ โ ๐ = ๐) | |
40 | 37 | fveq2d 6894 | . . . . 5 โข (๐ = ๐ โ (๐ผโ(๐โ0)) = (๐ผโ(๐โ0))) |
41 | 40, 39 | oveq12d 7429 | . . . 4 โข (๐ = ๐ โ ((๐ผโ(๐โ0)) ยท ๐) = ((๐ผโ(๐โ0)) ยท ๐)) |
42 | 38, 39, 41 | ifbieq12d 4555 | . . 3 โข (๐ = ๐ โ if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐)) = if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐))) |
43 | ovexd 7446 | . . . 4 โข (๐ โ ((๐ผโ(๐โ0)) ยท ๐) โ V) | |
44 | 8, 43 | ifexd 4575 | . . 3 โข (๐ โ if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐)) โ V) |
45 | 36, 42, 8, 44 | fvmptd3 7020 | . 2 โข (๐ โ (๐นโ๐) = if((๐โ0) = 0 , ๐, ((๐ผโ(๐โ0)) ยท ๐))) |
46 | 35, 45 | breqtrrd 5175 | 1 โข (๐ โ ๐ โผ (๐นโ๐)) |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 โ wi 4 โง wa 394 if-wif 1059 = wceq 1539 โ wcel 2104 โ wne 2938 โwrex 3068 Vcvv 3472 โ cdif 3944 ifcif 4527 {csn 4627 class class class wbr 5147 {copab 5209 โฆ cmpt 5230 โถwf 6538 โcfv 6542 (class class class)co 7411 Er wer 8702 0cc0 11112 โ0cn0 12476 ...cfz 13488 Basecbs 17148 ยท๐ cvsca 17205 0gc0g 17389 invrcinvr 20278 DivRingcdr 20500 freeLMod cfrlm 21520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-hom 17225 df-cco 17226 df-0g 17391 df-prds 17397 df-pws 17399 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-subrg 20459 df-drng 20502 df-lmod 20616 df-lss 20687 df-lvec 20858 df-sra 20930 df-rgmod 20931 df-dsmm 21506 df-frlm 21521 |
This theorem is referenced by: prjspner1 41670 |
Copyright terms: Public domain | W3C validator |