| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2573 eu6 2574 issettru 2813 issetlem 2815 rextru 3068 rexcom4b 3497 eueq 3696 ssrabeq 4064 nsspssun 4248 disjpss 4441 reusngf 4655 reuprg0 4683 reuprg 4684 pr1eqbg 4838 disjprg 5120 ax6vsep 5278 pwun 5551 dfid3 5556 elvv 5734 elvvv 5735 dfres3 5976 resopab 6026 xpcan2 6171 funfn 6571 dffn2 6713 dffn3 6723 dffn4 6801 fsn 7130 sucexb 7803 fparlem1 8116 wfrlem8OLD 8335 ixp0x 8945 ac6sfi 9297 fiint 9343 fiintOLD 9344 rankc1 9889 cf0 10270 ccatrcan 14742 prmreclem2 16942 subislly 23424 ovoliunlem1 25460 plyun0 26159 dmscut 27780 tgjustf 28457 ercgrg 28501 dfpth2 29716 0wlk 30102 0trl 30108 0pth 30111 0cycl 30120 nmoolb 30757 hlimreui 31225 nmoplb 31893 nmfnlb 31910 dmdbr5ati 32408 disjunsn 32580 ind1a 32841 fsumcvg4 33986 issibf 34370 bnj1174 35039 derang0 35196 subfacp1lem6 35212 satfdm 35396 bj-denoteslem 36894 bj-rexcom4bv 36905 bj-rexcom4b 36906 bj-tagex 37010 bj-dfid2ALT 37088 bj-restuni 37120 rdgeqoa 37393 ftc1anclem5 37726 disjressuc2 38411 eqvrelcoss3 38641 dfeldisj5 38744 dibord 41183 eu6w 42666 ifpnot 43461 ifpdfxor 43478 ifpid1g 43485 ifpim1g 43492 ifpimimb 43495 relopabVD 44892 n0abso 44968 euabsneu 47024 rmotru 48749 reutru 48750 |
| Copyright terms: Public domain | W3C validator |