|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) | 
| Ref | Expression | 
|---|---|
| biantru.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2572 eu6 2573 issettru 2818 issetlem 2820 rextru 3076 rexcom4b 3512 eueq 3713 ssrabeq 4083 nsspssun 4267 disjpss 4460 reusngf 4673 reuprg0 4701 reuprg 4702 pr1eqbg 4856 disjprg 5138 ax6vsep 5302 pwun 5575 dfid3 5580 elvv 5759 elvvv 5760 dfres3 6001 resopab 6051 xpcan2 6196 funfn 6595 dffn2 6737 dffn3 6747 dffn4 6825 fsn 7154 sucexb 7825 fparlem1 8138 wfrlem8OLD 8357 ixp0x 8967 ac6sfi 9321 fiint 9367 fiintOLD 9368 rankc1 9911 cf0 10292 ccatrcan 14758 prmreclem2 16956 subislly 23490 ovoliunlem1 25538 plyun0 26237 dmscut 27857 tgjustf 28482 ercgrg 28526 dfpth2 29750 0wlk 30136 0trl 30142 0pth 30145 0cycl 30154 nmoolb 30791 hlimreui 31259 nmoplb 31927 nmfnlb 31944 dmdbr5ati 32442 disjunsn 32608 ind1a 32845 fsumcvg4 33950 issibf 34336 bnj1174 35018 derang0 35175 subfacp1lem6 35191 satfdm 35375 bj-denoteslem 36873 bj-rexcom4bv 36884 bj-rexcom4b 36885 bj-tagex 36989 bj-dfid2ALT 37067 bj-restuni 37099 rdgeqoa 37372 ftc1anclem5 37705 disjressuc2 38390 eqvrelcoss3 38620 dfeldisj5 38723 dibord 41162 eu6w 42691 ifpnot 43488 ifpdfxor 43505 ifpid1g 43512 ifpim1g 43519 ifpimimb 43522 relopabVD 44926 n0abso 44998 euabsneu 47045 rmotru 48728 reutru 48729 | 
| Copyright terms: Public domain | W3C validator |