| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2568 eu6 2569 issettru 2809 issetlem 2811 rextru 3063 rexcom4b 3468 eueq 3662 ssrabeq 4031 nsspssun 4215 disjpss 4408 reusngf 4624 reuprg0 4652 reuprg 4653 pr1eqbg 4806 disjprg 5085 ax6vsep 5239 pwun 5507 dfid3 5512 elvv 5689 elvvv 5690 dfres3 5932 resopab 5982 xpcan2 6124 funfn 6511 dffn2 6653 dffn3 6663 dffn4 6741 fsn 7068 sucexb 7737 fparlem1 8042 ixp0x 8850 ac6sfi 9168 fiint 9211 rankc1 9763 cf0 10142 ccatrcan 14626 prmreclem2 16829 subislly 23396 ovoliunlem1 25430 plyun0 26129 dmscut 27752 rightpos 27782 tgjustf 28451 ercgrg 28495 dfpth2 29707 0wlk 30096 0trl 30102 0pth 30105 0cycl 30114 nmoolb 30751 hlimreui 31219 nmoplb 31887 nmfnlb 31904 dmdbr5ati 32402 disjunsn 32574 ind1a 32840 fsumcvg4 33963 issibf 34346 bnj1174 35015 derang0 35213 subfacp1lem6 35229 satfdm 35413 bj-denoteslem 36915 bj-rexcom4bv 36926 bj-rexcom4b 36927 bj-tagex 37031 bj-dfid2ALT 37109 bj-restuni 37141 rdgeqoa 37414 ftc1anclem5 37747 disjressuc2 38445 eqvrelcoss3 38724 dfeldisj5 38829 dibord 41268 eu6w 42779 ifpnot 43573 ifpdfxor 43590 ifpid1g 43597 ifpim1g 43604 ifpimimb 43607 relopabVD 45003 n0abso 45079 euabsneu 47138 rmotru 48913 reutru 48914 |
| Copyright terms: Public domain | W3C validator |