Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 529 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: biantrur 532 pm4.71 559 eu6lem 2571 eu6 2572 elisset 2818 isset 3450 rexcom4b 3466 eueq 3648 ssrabeq 4023 nsspssun 4197 disjpss 4400 reusngf 4612 reuprg0 4642 reuprg 4643 pr1eqbg 4793 disjprgw 5076 disjprg 5077 ax6vsep 5236 pwun 5498 dfid3 5503 elvv 5672 elvvv 5673 dfres3 5908 resopab 5954 xpcan2 6095 funfn 6493 dffn2 6632 dffn3 6643 dffn4 6724 fsn 7039 sucexb 7686 fparlem1 7984 wfrlem8OLD 8178 ixp0x 8745 ac6sfi 9106 fiint 9139 rankc1 9676 cf0 10057 ccatrcan 14481 prmreclem2 16667 subislly 22681 ovoliunlem1 24715 plyun0 25407 tgjustf 26883 ercgrg 26927 0wlk 28529 0trl 28535 0pth 28538 0cycl 28547 nmoolb 29182 hlimreui 29650 nmoplb 30318 nmfnlb 30335 dmdbr5ati 30833 disjunsn 30982 fsumcvg4 31949 ind1a 32036 issibf 32349 bnj1174 33032 derang0 33180 subfacp1lem6 33196 satfdm 33380 dmscut 34054 bj-denoteslem 35103 bj-rexcom4bv 35115 bj-rexcom4b 35116 bj-tagex 35225 bj-dfid2ALT 35284 bj-restuni 35316 rdgeqoa 35589 ftc1anclem5 35902 disjressuc2 36602 eqvrelcoss3 36832 dfeldisj5 36935 dibord 39373 ifpnot 41290 ifpdfxor 41307 ifpid1g 41314 ifpim1g 41321 ifpimimb 41324 relopabVD 42734 euabsneu 44766 rextru 46393 rmotru 46394 reutru 46395 |
Copyright terms: Public domain | W3C validator |