| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2566 eu6 2567 issettru 2806 issetlem 2808 rextru 3060 rexcom4b 3479 eueq 3679 ssrabeq 4047 nsspssun 4231 disjpss 4424 reusngf 4638 reuprg0 4666 reuprg 4667 pr1eqbg 4821 disjprg 5103 ax6vsep 5258 pwun 5531 dfid3 5536 elvv 5713 elvvv 5714 dfres3 5955 resopab 6005 xpcan2 6150 funfn 6546 dffn2 6690 dffn3 6700 dffn4 6778 fsn 7107 sucexb 7780 fparlem1 8091 ixp0x 8899 ac6sfi 9231 fiint 9277 fiintOLD 9278 rankc1 9823 cf0 10204 ccatrcan 14684 prmreclem2 16888 subislly 23368 ovoliunlem1 25403 plyun0 26102 dmscut 27723 tgjustf 28400 ercgrg 28444 dfpth2 29659 0wlk 30045 0trl 30051 0pth 30054 0cycl 30063 nmoolb 30700 hlimreui 31168 nmoplb 31836 nmfnlb 31853 dmdbr5ati 32351 disjunsn 32523 ind1a 32782 fsumcvg4 33940 issibf 34324 bnj1174 34993 derang0 35156 subfacp1lem6 35172 satfdm 35356 bj-denoteslem 36859 bj-rexcom4bv 36870 bj-rexcom4b 36871 bj-tagex 36975 bj-dfid2ALT 37053 bj-restuni 37085 rdgeqoa 37358 ftc1anclem5 37691 disjressuc2 38374 eqvrelcoss3 38609 dfeldisj5 38713 dibord 41153 eu6w 42664 ifpnot 43459 ifpdfxor 43476 ifpid1g 43483 ifpim1g 43490 ifpimimb 43493 relopabVD 44890 n0abso 44966 euabsneu 47029 rmotru 48791 reutru 48792 |
| Copyright terms: Public domain | W3C validator |