![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 525 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: pm4.71 555 mpbiran2 703 eu6lem 2644 eu6OLD 2647 isset 3424 rexcom4b 3444 rabtru 3582 eueq 3602 eueqOLD 3603 ssrabeq 3915 nsspssun 4087 disjpss 4252 pr1eqbg 4605 disjprg 4869 ax6vsep 5009 pwun 5248 dfid3 5251 elvv 5410 elvvv 5411 dfres3 5634 resopab 5683 xpcan2 5812 funfn 6153 dffn2 6280 dffn3 6289 dffn4 6359 fsn 6652 sucexb 7270 fparlem1 7541 fsplit 7546 wfrlem8 7688 ixp0x 8203 ac6sfi 8473 fiint 8506 rankc1 9010 cf0 9388 ccatrcan 13808 prmreclem2 15992 subislly 21655 ovoliunlem1 23668 plyun0 24352 tgjustf 25785 ercgrg 25829 0wlk 27492 0trl 27498 0pth 27501 0cycl 27510 nmoolb 28181 hlimreui 28651 nmoplb 29321 nmfnlb 29338 dmdbr5ati 29836 disjunsn 29954 fsumcvg4 30541 ind1a 30626 issibf 30940 bnj1174 31617 derang0 31697 subfacp1lem6 31713 dmscut 32457 bj-denotes 33377 bj-rexcom4bv 33391 bj-rexcom4b 33392 bj-tagex 33497 bj-restuni 33573 bj-ismooredr2 33588 rdgeqoa 33763 ftc1anclem5 34032 eqvrelcoss3 34907 dibord 37234 ifpnot 38656 ifpdfxor 38674 ifpid1g 38681 ifpim1g 38688 ifpimimb 38691 relopabVD 39955 euabsneu 41964 |
Copyright terms: Public domain | W3C validator |