MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biantru Structured version   Visualization version   GIF version

Theorem biantru 529
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
biantru.1 𝜑
Assertion
Ref Expression
biantru (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2 𝜑
2 iba 527 . 2 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  biantrur  530  pm4.71  557  eu6lem  2574  eu6  2575  elisset  2821  isset  3443  rexcom4b  3459  eueq  3646  ssrabeq  4021  nsspssun  4196  disjpss  4399  reusngf  4613  reuprg0  4643  reuprg  4644  pr1eqbg  4792  disjprgw  5073  disjprg  5074  ax6vsep  5230  pwun  5486  dfid3  5491  elvv  5660  elvvv  5661  dfres3  5893  resopab  5939  xpcan2  6077  funfn  6460  dffn2  6598  dffn3  6609  dffn4  6690  fsn  7001  sucexb  7644  fparlem1  7936  fsplitOLD  7942  wfrlem8OLD  8131  ixp0x  8688  ac6sfi  9019  fiint  9052  rankc1  9612  cf0  9991  ccatrcan  14413  prmreclem2  16599  subislly  22613  ovoliunlem1  24647  plyun0  25339  tgjustf  26815  ercgrg  26859  0wlk  28459  0trl  28465  0pth  28468  0cycl  28477  nmoolb  29112  hlimreui  29580  nmoplb  30248  nmfnlb  30265  dmdbr5ati  30763  disjunsn  30912  fsumcvg4  31879  ind1a  31966  issibf  32279  bnj1174  32962  derang0  33110  subfacp1lem6  33126  satfdm  33310  dmscut  33984  bj-denoteslem  35034  bj-rexcom4bv  35046  bj-rexcom4b  35047  bj-tagex  35156  bj-dfid2ALT  35215  bj-restuni  35247  rdgeqoa  35520  ftc1anclem5  35833  eqvrelcoss3  36710  dfeldisj5  36811  dibord  39152  ifpnot  41039  ifpdfxor  41056  ifpid1g  41063  ifpim1g  41070  ifpimimb  41073  relopabVD  42474  euabsneu  44473  rextru  46101  rmotru  46102  reutru  46103
  Copyright terms: Public domain W3C validator