Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 532 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: biantrur 535 pm4.71 562 eu6lem 2593 eu6 2594 elisset 2834 isset 3423 rexcom4b 3441 eueq 3623 ssrabeq 3989 nsspssun 4163 disjpss 4358 reusngf 4570 reuprg0 4596 reuprg 4597 pr1eqbg 4745 disjprgw 5028 disjprg 5029 ax6vsep 5174 pwun 5429 dfid3 5433 elvv 5596 elvvv 5597 dfres3 5829 resopab 5875 xpcan2 6007 funfn 6366 dffn2 6501 dffn3 6511 dffn4 6583 fsn 6889 sucexb 7524 fparlem1 7813 fsplitOLD 7819 wfrlem8 7973 ixp0x 8509 ac6sfi 8788 fiint 8821 rankc1 9325 cf0 9704 ccatrcan 14121 prmreclem2 16301 subislly 22174 ovoliunlem1 24195 plyun0 24886 tgjustf 26359 ercgrg 26403 0wlk 27993 0trl 27999 0pth 28002 0cycl 28011 nmoolb 28646 hlimreui 29114 nmoplb 29782 nmfnlb 29799 dmdbr5ati 30297 disjunsn 30448 fsumcvg4 31414 ind1a 31499 issibf 31812 bnj1174 32496 derang0 32640 subfacp1lem6 32656 satfdm 32840 dmscut 33559 bj-denoteslem 34583 bj-rexcom4bv 34596 bj-rexcom4b 34597 bj-tagex 34697 bj-restuni 34785 rdgeqoa 35060 ftc1anclem5 35407 eqvrelcoss3 36286 dfeldisj5 36387 dibord 38728 ifpnot 40544 ifpdfxor 40561 ifpid1g 40568 ifpim1g 40575 ifpimimb 40578 relopabVD 41973 euabsneu 43979 |
Copyright terms: Public domain | W3C validator |