| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2566 eu6 2567 issettru 2806 issetlem 2808 rextru 3060 rexcom4b 3468 eueq 3668 ssrabeq 4035 nsspssun 4219 disjpss 4412 reusngf 4626 reuprg0 4654 reuprg 4655 pr1eqbg 4808 disjprg 5088 ax6vsep 5242 pwun 5512 dfid3 5517 elvv 5694 elvvv 5695 dfres3 5935 resopab 5985 xpcan2 6126 funfn 6512 dffn2 6654 dffn3 6664 dffn4 6742 fsn 7069 sucexb 7740 fparlem1 8045 ixp0x 8853 ac6sfi 9173 fiint 9216 fiintOLD 9217 rankc1 9766 cf0 10145 ccatrcan 14625 prmreclem2 16829 subislly 23366 ovoliunlem1 25401 plyun0 26100 dmscut 27722 tgjustf 28418 ercgrg 28462 dfpth2 29674 0wlk 30060 0trl 30066 0pth 30069 0cycl 30078 nmoolb 30715 hlimreui 31183 nmoplb 31851 nmfnlb 31868 dmdbr5ati 32366 disjunsn 32538 ind1a 32802 fsumcvg4 33917 issibf 34301 bnj1174 34970 derang0 35146 subfacp1lem6 35162 satfdm 35346 bj-denoteslem 36849 bj-rexcom4bv 36860 bj-rexcom4b 36861 bj-tagex 36965 bj-dfid2ALT 37043 bj-restuni 37075 rdgeqoa 37348 ftc1anclem5 37681 disjressuc2 38364 eqvrelcoss3 38599 dfeldisj5 38703 dibord 41142 eu6w 42653 ifpnot 43447 ifpdfxor 43464 ifpid1g 43471 ifpim1g 43478 ifpimimb 43481 relopabVD 44878 n0abso 44954 euabsneu 47016 rmotru 48791 reutru 48792 |
| Copyright terms: Public domain | W3C validator |