| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2566 eu6 2567 issettru 2806 issetlem 2808 rextru 3060 rexcom4b 3476 eueq 3676 ssrabeq 4043 nsspssun 4227 disjpss 4420 reusngf 4634 reuprg0 4662 reuprg 4663 pr1eqbg 4817 disjprg 5098 ax6vsep 5253 pwun 5524 dfid3 5529 elvv 5706 elvvv 5707 dfres3 5944 resopab 5994 xpcan2 6138 funfn 6530 dffn2 6672 dffn3 6682 dffn4 6760 fsn 7089 sucexb 7760 fparlem1 8068 ixp0x 8876 ac6sfi 9207 fiint 9253 fiintOLD 9254 rankc1 9799 cf0 10180 ccatrcan 14660 prmreclem2 16864 subislly 23401 ovoliunlem1 25436 plyun0 26135 dmscut 27757 tgjustf 28453 ercgrg 28497 dfpth2 29709 0wlk 30095 0trl 30101 0pth 30104 0cycl 30113 nmoolb 30750 hlimreui 31218 nmoplb 31886 nmfnlb 31903 dmdbr5ati 32401 disjunsn 32573 ind1a 32832 fsumcvg4 33933 issibf 34317 bnj1174 34986 derang0 35149 subfacp1lem6 35165 satfdm 35349 bj-denoteslem 36852 bj-rexcom4bv 36863 bj-rexcom4b 36864 bj-tagex 36968 bj-dfid2ALT 37046 bj-restuni 37078 rdgeqoa 37351 ftc1anclem5 37684 disjressuc2 38367 eqvrelcoss3 38602 dfeldisj5 38706 dibord 41146 eu6w 42657 ifpnot 43452 ifpdfxor 43469 ifpid1g 43476 ifpim1g 43483 ifpimimb 43486 relopabVD 44883 n0abso 44959 euabsneu 47022 rmotru 48784 reutru 48785 |
| Copyright terms: Public domain | W3C validator |