Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2574 eu6 2575 elisset 2821 isset 3443 rexcom4b 3459 eueq 3646 ssrabeq 4021 nsspssun 4196 disjpss 4399 reusngf 4613 reuprg0 4643 reuprg 4644 pr1eqbg 4792 disjprgw 5073 disjprg 5074 ax6vsep 5230 pwun 5486 dfid3 5491 elvv 5660 elvvv 5661 dfres3 5893 resopab 5939 xpcan2 6077 funfn 6460 dffn2 6598 dffn3 6609 dffn4 6690 fsn 7001 sucexb 7644 fparlem1 7936 fsplitOLD 7942 wfrlem8OLD 8131 ixp0x 8688 ac6sfi 9019 fiint 9052 rankc1 9612 cf0 9991 ccatrcan 14413 prmreclem2 16599 subislly 22613 ovoliunlem1 24647 plyun0 25339 tgjustf 26815 ercgrg 26859 0wlk 28459 0trl 28465 0pth 28468 0cycl 28477 nmoolb 29112 hlimreui 29580 nmoplb 30248 nmfnlb 30265 dmdbr5ati 30763 disjunsn 30912 fsumcvg4 31879 ind1a 31966 issibf 32279 bnj1174 32962 derang0 33110 subfacp1lem6 33126 satfdm 33310 dmscut 33984 bj-denoteslem 35034 bj-rexcom4bv 35046 bj-rexcom4b 35047 bj-tagex 35156 bj-dfid2ALT 35215 bj-restuni 35247 rdgeqoa 35520 ftc1anclem5 35833 eqvrelcoss3 36710 dfeldisj5 36811 dibord 39152 ifpnot 41039 ifpdfxor 41056 ifpid1g 41063 ifpim1g 41070 ifpimimb 41073 relopabVD 42474 euabsneu 44473 rextru 46101 rmotru 46102 reutru 46103 |
Copyright terms: Public domain | W3C validator |