![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2576 eu6 2577 issettru 2822 issetlem 2824 rextru 3083 rexcom4b 3521 eueq 3730 ssrabeq 4107 nsspssun 4287 disjpss 4484 reusngf 4696 reuprg0 4727 reuprg 4728 pr1eqbg 4881 disjprg 5162 ax6vsep 5321 pwun 5591 dfid3 5596 elvv 5774 elvvv 5775 dfres3 6014 resopab 6063 xpcan2 6208 funfn 6608 dffn2 6749 dffn3 6759 dffn4 6840 fsn 7169 sucexb 7840 fparlem1 8153 wfrlem8OLD 8372 ixp0x 8984 ac6sfi 9348 fiint 9394 fiintOLD 9395 rankc1 9939 cf0 10320 ccatrcan 14767 prmreclem2 16964 subislly 23510 ovoliunlem1 25556 plyun0 26256 dmscut 27874 tgjustf 28499 ercgrg 28543 0wlk 30148 0trl 30154 0pth 30157 0cycl 30166 nmoolb 30803 hlimreui 31271 nmoplb 31939 nmfnlb 31956 dmdbr5ati 32454 disjunsn 32616 fsumcvg4 33896 ind1a 33983 issibf 34298 bnj1174 34979 derang0 35137 subfacp1lem6 35153 satfdm 35337 bj-denoteslem 36837 bj-rexcom4bv 36848 bj-rexcom4b 36849 bj-tagex 36953 bj-dfid2ALT 37031 bj-restuni 37063 rdgeqoa 37336 ftc1anclem5 37657 disjressuc2 38344 eqvrelcoss3 38574 dfeldisj5 38677 dibord 41116 eu6w 42631 ifpnot 43432 ifpdfxor 43449 ifpid1g 43456 ifpim1g 43463 ifpimimb 43466 relopabVD 44872 euabsneu 46943 rmotru 48536 reutru 48537 |
Copyright terms: Public domain | W3C validator |