| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2567 eu6 2568 issettru 2807 issetlem 2809 rextru 3061 rexcom4b 3482 eueq 3682 ssrabeq 4050 nsspssun 4234 disjpss 4427 reusngf 4641 reuprg0 4669 reuprg 4670 pr1eqbg 4824 disjprg 5106 ax6vsep 5261 pwun 5534 dfid3 5539 elvv 5716 elvvv 5717 dfres3 5958 resopab 6008 xpcan2 6153 funfn 6549 dffn2 6693 dffn3 6703 dffn4 6781 fsn 7110 sucexb 7783 fparlem1 8094 ixp0x 8902 ac6sfi 9238 fiint 9284 fiintOLD 9285 rankc1 9830 cf0 10211 ccatrcan 14691 prmreclem2 16895 subislly 23375 ovoliunlem1 25410 plyun0 26109 dmscut 27730 tgjustf 28407 ercgrg 28451 dfpth2 29666 0wlk 30052 0trl 30058 0pth 30061 0cycl 30070 nmoolb 30707 hlimreui 31175 nmoplb 31843 nmfnlb 31860 dmdbr5ati 32358 disjunsn 32530 ind1a 32789 fsumcvg4 33947 issibf 34331 bnj1174 35000 derang0 35163 subfacp1lem6 35179 satfdm 35363 bj-denoteslem 36866 bj-rexcom4bv 36877 bj-rexcom4b 36878 bj-tagex 36982 bj-dfid2ALT 37060 bj-restuni 37092 rdgeqoa 37365 ftc1anclem5 37698 disjressuc2 38381 eqvrelcoss3 38616 dfeldisj5 38720 dibord 41160 eu6w 42671 ifpnot 43466 ifpdfxor 43483 ifpid1g 43490 ifpim1g 43497 ifpimimb 43500 relopabVD 44897 n0abso 44973 euabsneu 47033 rmotru 48795 reutru 48796 |
| Copyright terms: Public domain | W3C validator |