Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbalgVD Structured version   Visualization version   GIF version

Theorem hbalgVD 40696
Description: Virtual deduction proof of hbalg 40346. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 40346 is hbalgVD 40696 without virtual deductions and was automatically derived from hbalgVD 40696. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
3:: (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
4:2,3: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
5:: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦( 𝜑 → ∀𝑥𝜑))
6:5,4: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:6: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥𝑦𝜑))
Assertion
Ref Expression
hbalgVD (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbalgVD
StepHypRef Expression
1 hba1 2228 . . 3 (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦(𝜑 → ∀𝑥𝜑))
2 idn1 40365 . . . . 5 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
3 alim 1774 . . . . 5 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
42, 3e1a 40418 . . . 4 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
5 ax-11 2094 . . . 4 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
6 imim1 83 . . . 4 ((∀𝑦𝜑 → ∀𝑦𝑥𝜑) → ((∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑)))
74, 5, 6e10 40485 . . 3 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
81, 7gen11nv 40408 . 2 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
98in1 40362 1 (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-10 2080  ax-11 2094  ax-12 2107
This theorem depends on definitions:  df-bi 199  df-or 835  df-ex 1744  df-nf 1748  df-vd1 40361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator