Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbalgVD Structured version   Visualization version   GIF version

Theorem hbalgVD 42478
Description: Virtual deduction proof of hbalg 42128. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 42128 is hbalgVD 42478 without virtual deductions and was automatically derived from hbalgVD 42478. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
3:: (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
4:2,3: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
5:: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦( 𝜑 → ∀𝑥𝜑))
6:5,4: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:6: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥𝑦𝜑))
Assertion
Ref Expression
hbalgVD (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbalgVD
StepHypRef Expression
1 hba1 2293 . . 3 (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦(𝜑 → ∀𝑥𝜑))
2 idn1 42147 . . . . 5 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
3 alim 1816 . . . . 5 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
42, 3e1a 42200 . . . 4 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
5 ax-11 2157 . . . 4 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
6 imim1 83 . . . 4 ((∀𝑦𝜑 → ∀𝑦𝑥𝜑) → ((∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑)))
74, 5, 6e10 42267 . . 3 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
81, 7gen11nv 42190 . 2 (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
98in1 42144 1 (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1786  df-nf 1790  df-vd1 42143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator