![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbalgVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of hbalg 40346.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 40346
is hbalgVD 40696 without virtual deductions and was automatically derived
from hbalgVD 40696. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
Ref | Expression |
---|---|
hbalgVD | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 2228 | . . 3 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(𝜑 → ∀𝑥𝜑)) | |
2 | idn1 40365 | . . . . 5 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑 → ∀𝑥𝜑) ) | |
3 | alim 1774 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
4 | 2, 3 | e1a 40418 | . . . 4 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) ) |
5 | ax-11 2094 | . . . 4 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
6 | imim1 83 | . . . 4 ⊢ ((∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) → ((∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑))) | |
7 | 4, 5, 6 | e10 40485 | . . 3 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) ) |
8 | 1, 7 | gen11nv 40408 | . 2 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) ) |
9 | 8 | in1 40362 | 1 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-10 2080 ax-11 2094 ax-12 2107 |
This theorem depends on definitions: df-bi 199 df-or 835 df-ex 1744 df-nf 1748 df-vd1 40361 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |