![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbalgVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of hbalg 44526.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44526
is hbalgVD 44876 without virtual deductions and was automatically derived
from hbalgVD 44876. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
Ref | Expression |
---|---|
hbalgVD | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 2297 | . . 3 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(𝜑 → ∀𝑥𝜑)) | |
2 | idn1 44545 | . . . . 5 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑 → ∀𝑥𝜑) ) | |
3 | alim 1808 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
4 | 2, 3 | e1a 44598 | . . . 4 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) ) |
5 | ax-11 2158 | . . . 4 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
6 | imim1 83 | . . . 4 ⊢ ((∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) → ((∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑))) | |
7 | 4, 5, 6 | e10 44665 | . . 3 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) ) |
8 | 1, 7 | gen11nv 44588 | . 2 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) ) |
9 | 8 | in1 44542 | 1 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 df-vd1 44541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |