| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbalgVD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of hbalg 44533.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44533
is hbalgVD 44882 without virtual deductions and was automatically derived
from hbalgVD 44882. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| hbalgVD | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 2293 | . . 3 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(𝜑 → ∀𝑥𝜑)) | |
| 2 | idn1 44552 | . . . . 5 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑 → ∀𝑥𝜑) ) | |
| 3 | alim 1810 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 4 | 2, 3 | e1a 44605 | . . . 4 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) ) |
| 5 | ax-11 2158 | . . . 4 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 6 | imim1 83 | . . . 4 ⊢ ((∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) → ((∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑))) | |
| 7 | 4, 5, 6 | e10 44672 | . . 3 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) ) |
| 8 | 1, 7 | gen11nv 44595 | . 2 ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) ) |
| 9 | 8 | in1 44549 | 1 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-vd1 44548 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |