Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf1 Structured version   Visualization version   GIF version

Theorem inf1 9073
 Description: Variation of Axiom of Infinity (using zfinf 9090 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.)
Hypothesis
Ref Expression
inf1.1 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
Assertion
Ref Expression
inf1 𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))

Proof of Theorem inf1
StepHypRef Expression
1 inf1.1 . 2 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
2 ne0i 4253 . . 3 (𝑦𝑥𝑥 ≠ ∅)
32anim1i 617 . 2 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) → (𝑥 ≠ ∅ ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
41, 3eximii 1838 1 𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∀wal 1536  ∃wex 1781   ≠ wne 2990  ∅c0 4246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ne 2991  df-dif 3887  df-nul 4247 This theorem is referenced by:  inf2  9074
 Copyright terms: Public domain W3C validator