| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0i | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i | ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4340 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | |
| 2 | 1 | neqned 2947 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Copyright terms: Public domain | W3C validator |