| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf2 | Structured version Visualization version GIF version | ||
| Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf 9658 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf1.1 | ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| Ref | Expression |
|---|---|
| inf2 | ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf1.1 | . . 3 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
| 2 | 1 | inf1 9641 | . 2 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 3 | df-ss 3948 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥)) | |
| 4 | eluni 4891 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) | |
| 5 | 4 | imbi2i 336 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 ⊆ ∪ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 8 | 7 | anbi2i 623 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ (𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
| 9 | 8 | exbii 1848 | . 2 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ ∃𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
| 10 | 2, 9 | mpbir 231 | 1 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-uni 4889 |
| This theorem is referenced by: axinf2 9659 |
| Copyright terms: Public domain | W3C validator |