![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf2 | Structured version Visualization version GIF version |
Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf 9583 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf1.1 | ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
Ref | Expression |
---|---|
inf2 | ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf1.1 | . . 3 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
2 | 1 | inf1 9566 | . 2 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
3 | dfss2 3934 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥)) | |
4 | eluni 4872 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) | |
5 | 4 | imbi2i 336 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
6 | 5 | albii 1822 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 ⊆ ∪ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
8 | 7 | anbi2i 624 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ (𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
9 | 8 | exbii 1851 | . 2 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) ↔ ∃𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
10 | 2, 9 | mpbir 230 | 1 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 ⊆ wss 3914 ∅c0 4286 ∪ cuni 4869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4287 df-uni 4870 |
This theorem is referenced by: axinf2 9584 |
Copyright terms: Public domain | W3C validator |