MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf2 Structured version   Visualization version   GIF version

Theorem inf2 9086
Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf 9102 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.)
Hypothesis
Ref Expression
inf1.1 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
Assertion
Ref Expression
inf2 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem inf2
StepHypRef Expression
1 inf1.1 . . 3 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
21inf1 9085 . 2 𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
3 dfss2 3955 . . . . 5 (𝑥 𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 𝑥))
4 eluni 4841 . . . . . . 7 (𝑦 𝑥 ↔ ∃𝑧(𝑦𝑧𝑧𝑥))
54imbi2i 338 . . . . . 6 ((𝑦𝑥𝑦 𝑥) ↔ (𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
65albii 1820 . . . . 5 (∀𝑦(𝑦𝑥𝑦 𝑥) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
73, 6bitri 277 . . . 4 (𝑥 𝑥 ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
87anbi2i 624 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ (𝑥 ≠ ∅ ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
98exbii 1848 . 2 (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ ∃𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
102, 9mpbir 233 1 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1535  wex 1780  wcel 2114  wne 3016  wss 3936  c0 4291   cuni 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-v 3496  df-dif 3939  df-in 3943  df-ss 3952  df-nul 4292  df-uni 4839
This theorem is referenced by:  axinf2  9103
  Copyright terms: Public domain W3C validator