Step | Hyp | Ref
| Expression |
1 | | fr0g 8267 |
. . . 4
⊢ (𝑥 ∈ V → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥) |
2 | 1 | elv 3438 |
. . 3
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾
ω)‘∅) = 𝑥 |
3 | | frfnom 8266 |
. . . 4
⊢
(rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) Fn
ω |
4 | | peano1 7735 |
. . . 4
⊢ ∅
∈ ω |
5 | | fnfvelrn 6958 |
. . . 4
⊢
(((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
∧ ∅ ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)) |
6 | 3, 4, 5 | mp2an 689 |
. . 3
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾
ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) |
7 | 2, 6 | eqeltrri 2836 |
. 2
⊢ 𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) |
8 | | fvelrnb 6830 |
. . . . 5
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
→ (𝑧 ∈ ran
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧)) |
9 | 3, 8 | ax-mp 5 |
. . . 4
⊢ (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧) |
10 | | fvex 6787 |
. . . . . . . . . 10
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V |
11 | 10 | sucid 6345 |
. . . . . . . . 9
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) |
12 | 10 | sucex 7656 |
. . . . . . . . . 10
⊢ suc
((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V |
13 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) = (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) |
14 | | suceq 6331 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑣 → suc 𝑧 = suc 𝑣) |
15 | | suceq 6331 |
. . . . . . . . . . 11
⊢ (𝑧 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) → suc 𝑧 = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓)) |
16 | 13, 14, 15 | frsucmpt2 8271 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ ω ∧ suc
((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓)) |
17 | 12, 16 | mpan2 688 |
. . . . . . . . 9
⊢ (𝑓 ∈ ω →
((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓)) |
18 | 11, 17 | eleqtrrid 2846 |
. . . . . . . 8
⊢ (𝑓 ∈ ω →
((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)) |
19 | | eleq1 2826 |
. . . . . . . 8
⊢
(((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ↔ 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓))) |
20 | 18, 19 | syl5ib 243 |
. . . . . . 7
⊢
(((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓))) |
21 | | peano2b 7729 |
. . . . . . . 8
⊢ (𝑓 ∈ ω ↔ suc 𝑓 ∈
ω) |
22 | | fnfvelrn 6958 |
. . . . . . . . 9
⊢
(((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
∧ suc 𝑓 ∈ ω)
→ ((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘suc
𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) |
23 | 3, 22 | mpan 687 |
. . . . . . . 8
⊢ (suc
𝑓 ∈ ω →
((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) |
24 | 21, 23 | sylbi 216 |
. . . . . . 7
⊢ (𝑓 ∈ ω →
((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) |
25 | 20, 24 | jca2 514 |
. . . . . 6
⊢
(((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) |
26 | | fvex 6787 |
. . . . . . 7
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘suc
𝑓) ∈
V |
27 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓))) |
28 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
29 | 27, 28 | anbi12d 631 |
. . . . . . 7
⊢ (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) ↔ (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) |
30 | 26, 29 | spcev 3545 |
. . . . . 6
⊢ ((𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
31 | 25, 30 | syl6com 37 |
. . . . 5
⊢ (𝑓 ∈ ω →
(((rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) |
32 | 31 | rexlimiv 3209 |
. . . 4
⊢
(∃𝑓 ∈
ω ((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
33 | 9, 32 | sylbi 216 |
. . 3
⊢ (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
34 | 33 | ax-gen 1798 |
. 2
⊢
∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
35 | | fndm 6536 |
. . . . . 6
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
→ dom (rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) =
ω) |
36 | 3, 35 | ax-mp 5 |
. . . . 5
⊢ dom
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) = ω |
37 | | id 22 |
. . . . 5
⊢ (ω
∈ 𝑉 → ω
∈ 𝑉) |
38 | 36, 37 | eqeltrid 2843 |
. . . 4
⊢ (ω
∈ 𝑉 → dom
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) ∈ 𝑉) |
39 | | fnfun 6533 |
. . . . 5
⊢
((rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
→ Fun (rec((𝑣 ∈ V
↦ suc 𝑣), 𝑥) ↾
ω)) |
40 | 3, 39 | ax-mp 5 |
. . . 4
⊢ Fun
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) |
41 | | funrnex 7796 |
. . . 4
⊢ (dom
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) ∈ 𝑉 → (Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈
V)) |
42 | 38, 40, 41 | mpisyl 21 |
. . 3
⊢ (ω
∈ 𝑉 → ran
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) ∈ V) |
43 | | eleq2 2827 |
. . . . 5
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
44 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
45 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))) |
46 | 45 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) |
47 | 46 | exbidv 1924 |
. . . . . . 7
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) |
48 | 44, 47 | imbi12d 345 |
. . . . . 6
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)) ↔ (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))) |
49 | 48 | albidv 1923 |
. . . . 5
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))) |
50 | 43, 49 | anbi12d 631 |
. . . 4
⊢ (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) ↔ (𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))) |
51 | 50 | spcegv 3536 |
. . 3
⊢ (ran
(rec((𝑣 ∈ V ↦
suc 𝑣), 𝑥) ↾ ω) ∈ V → ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))))) |
52 | 42, 51 | syl 17 |
. 2
⊢ (ω
∈ 𝑉 → ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))))) |
53 | 7, 34, 52 | mp2ani 695 |
1
⊢ (ω
∈ 𝑉 →
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)))) |