MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf0 Structured version   Visualization version   GIF version

Theorem inf0 9349
Description: Existence of ω implies our axiom of infinity ax-inf 9366. The proof shows that the especially contrived class "ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) " exists, is a subset of its union, and contains a given set 𝑥 (and thus is nonempty). Thus, it provides an example demonstrating that a set 𝑦 exists with the necessary properties demanded by ax-inf 9366. (Contributed by NM, 15-Oct-1996.) Revised to closed form. (Revised by BJ, 20-May-2024.)
Assertion
Ref Expression
inf0 (ω ∈ 𝑉 → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem inf0
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0g 8252 . . . 4 (𝑥 ∈ V → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥)
21elv 3437 . . 3 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥
3 frfnom 8251 . . . 4 (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
4 peano1 7724 . . . 4 ∅ ∈ ω
5 fnfvelrn 6953 . . . 4 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
63, 4, 5mp2an 689 . . 3 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
72, 6eqeltrri 2838 . 2 𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
8 fvelrnb 6825 . . . . 5 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧))
93, 8ax-mp 5 . . . 4 (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧)
10 fvex 6782 . . . . . . . . . 10 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V
1110sucid 6343 . . . . . . . . 9 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓)
1210sucex 7647 . . . . . . . . . 10 suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V
13 eqid 2740 . . . . . . . . . . 11 (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
14 suceq 6329 . . . . . . . . . . 11 (𝑧 = 𝑣 → suc 𝑧 = suc 𝑣)
15 suceq 6329 . . . . . . . . . . 11 (𝑧 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) → suc 𝑧 = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1613, 14, 15frsucmpt2 8256 . . . . . . . . . 10 ((𝑓 ∈ ω ∧ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1712, 16mpan2 688 . . . . . . . . 9 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1811, 17eleqtrrid 2848 . . . . . . . 8 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓))
19 eleq1 2828 . . . . . . . 8 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ↔ 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
2018, 19syl5ib 243 . . . . . . 7 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
21 peano2b 7718 . . . . . . . 8 (𝑓 ∈ ω ↔ suc 𝑓 ∈ ω)
22 fnfvelrn 6953 . . . . . . . . 9 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω ∧ suc 𝑓 ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
233, 22mpan 687 . . . . . . . 8 (suc 𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
2421, 23sylbi 216 . . . . . . 7 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
2520, 24jca2 514 . . . . . 6 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
26 fvex 6782 . . . . . . 7 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ V
27 eleq2 2829 . . . . . . . 8 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑧𝑤𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
28 eleq1 2828 . . . . . . . 8 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
2927, 28anbi12d 631 . . . . . . 7 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → ((𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) ↔ (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
3026, 29spcev 3544 . . . . . 6 ((𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3125, 30syl6com 37 . . . . 5 (𝑓 ∈ ω → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
3231rexlimiv 3211 . . . 4 (∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
339, 32sylbi 216 . . 3 (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3433ax-gen 1802 . 2 𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
35 fndm 6533 . . . . . 6 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = ω)
363, 35ax-mp 5 . . . . 5 dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = ω
37 id 22 . . . . 5 (ω ∈ 𝑉 → ω ∈ 𝑉)
3836, 37eqeltrid 2845 . . . 4 (ω ∈ 𝑉 → dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ 𝑉)
39 fnfun 6530 . . . . 5 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
403, 39ax-mp 5 . . . 4 Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
41 funrnex 7784 . . . 4 (dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ 𝑉 → (Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V))
4238, 40, 41mpisyl 21 . . 3 (ω ∈ 𝑉 → ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V)
43 eleq2 2829 . . . . 5 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑥𝑦𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
44 eleq2 2829 . . . . . . 7 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑧𝑦𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
45 eleq2 2829 . . . . . . . . 9 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑤𝑦𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
4645anbi2d 629 . . . . . . . 8 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧𝑤𝑤𝑦) ↔ (𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
4746exbidv 1928 . . . . . . 7 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
4844, 47imbi12d 345 . . . . . 6 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))
4948albidv 1927 . . . . 5 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))
5043, 49anbi12d 631 . . . 4 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))))
5150spcegv 3535 . . 3 (ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V → ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))))
5242, 51syl 17 . 2 (ω ∈ 𝑉 → ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))))
537, 34, 52mp2ani 695 1 (ω ∈ 𝑉 → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540   = wceq 1542  wex 1786  wcel 2110  wrex 3067  Vcvv 3431  c0 4262  cmpt 5162  dom cdm 5589  ran crn 5590  cres 5591  suc csuc 6266  Fun wfun 6425   Fn wfn 6426  cfv 6431  ωcom 7701  reccrdg 8225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-om 7702  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226
This theorem is referenced by:  axinf  9372
  Copyright terms: Public domain W3C validator