MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf0 Structured version   Visualization version   GIF version

Theorem inf0 9379
Description: Existence of ω implies our axiom of infinity ax-inf 9396. The proof shows that the especially contrived class "ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) " exists, is a subset of its union, and contains a given set 𝑥 (and thus is nonempty). Thus, it provides an example demonstrating that a set 𝑦 exists with the necessary properties demanded by ax-inf 9396. (Contributed by NM, 15-Oct-1996.) Revised to closed form. (Revised by BJ, 20-May-2024.)
Assertion
Ref Expression
inf0 (ω ∈ 𝑉 → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem inf0
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0g 8267 . . . 4 (𝑥 ∈ V → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥)
21elv 3438 . . 3 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥
3 frfnom 8266 . . . 4 (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
4 peano1 7735 . . . 4 ∅ ∈ ω
5 fnfvelrn 6958 . . . 4 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
63, 4, 5mp2an 689 . . 3 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
72, 6eqeltrri 2836 . 2 𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
8 fvelrnb 6830 . . . . 5 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧))
93, 8ax-mp 5 . . . 4 (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧)
10 fvex 6787 . . . . . . . . . 10 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V
1110sucid 6345 . . . . . . . . 9 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓)
1210sucex 7656 . . . . . . . . . 10 suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V
13 eqid 2738 . . . . . . . . . . 11 (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
14 suceq 6331 . . . . . . . . . . 11 (𝑧 = 𝑣 → suc 𝑧 = suc 𝑣)
15 suceq 6331 . . . . . . . . . . 11 (𝑧 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) → suc 𝑧 = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1613, 14, 15frsucmpt2 8271 . . . . . . . . . 10 ((𝑓 ∈ ω ∧ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1712, 16mpan2 688 . . . . . . . . 9 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1811, 17eleqtrrid 2846 . . . . . . . 8 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓))
19 eleq1 2826 . . . . . . . 8 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ↔ 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
2018, 19syl5ib 243 . . . . . . 7 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
21 peano2b 7729 . . . . . . . 8 (𝑓 ∈ ω ↔ suc 𝑓 ∈ ω)
22 fnfvelrn 6958 . . . . . . . . 9 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω ∧ suc 𝑓 ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
233, 22mpan 687 . . . . . . . 8 (suc 𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
2421, 23sylbi 216 . . . . . . 7 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
2520, 24jca2 514 . . . . . 6 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
26 fvex 6787 . . . . . . 7 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ V
27 eleq2 2827 . . . . . . . 8 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑧𝑤𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
28 eleq1 2826 . . . . . . . 8 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
2927, 28anbi12d 631 . . . . . . 7 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → ((𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) ↔ (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
3026, 29spcev 3545 . . . . . 6 ((𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3125, 30syl6com 37 . . . . 5 (𝑓 ∈ ω → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
3231rexlimiv 3209 . . . 4 (∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
339, 32sylbi 216 . . 3 (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3433ax-gen 1798 . 2 𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
35 fndm 6536 . . . . . 6 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = ω)
363, 35ax-mp 5 . . . . 5 dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = ω
37 id 22 . . . . 5 (ω ∈ 𝑉 → ω ∈ 𝑉)
3836, 37eqeltrid 2843 . . . 4 (ω ∈ 𝑉 → dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ 𝑉)
39 fnfun 6533 . . . . 5 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
403, 39ax-mp 5 . . . 4 Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
41 funrnex 7796 . . . 4 (dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ 𝑉 → (Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V))
4238, 40, 41mpisyl 21 . . 3 (ω ∈ 𝑉 → ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V)
43 eleq2 2827 . . . . 5 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑥𝑦𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
44 eleq2 2827 . . . . . . 7 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑧𝑦𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
45 eleq2 2827 . . . . . . . . 9 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑤𝑦𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
4645anbi2d 629 . . . . . . . 8 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧𝑤𝑤𝑦) ↔ (𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
4746exbidv 1924 . . . . . . 7 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
4844, 47imbi12d 345 . . . . . 6 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))
4948albidv 1923 . . . . 5 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))
5043, 49anbi12d 631 . . . 4 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))))
5150spcegv 3536 . . 3 (ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V → ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))))
5242, 51syl 17 . 2 (ω ∈ 𝑉 → ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))))
537, 34, 52mp2ani 695 1 (ω ∈ 𝑉 → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  c0 4256  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  suc csuc 6268  Fun wfun 6427   Fn wfn 6428  cfv 6433  ωcom 7712  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  axinf  9402
  Copyright terms: Public domain W3C validator