| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc5 | Structured version Visualization version GIF version | ||
| Description: Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotasbc5 | ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3789 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)) | |
| 2 | 1 | a1i 11 | 1 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∃!weu 2562 [wsbc 3761 ℩cio 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3762 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |