| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc5 | Structured version Visualization version GIF version | ||
| Description: Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotasbc5 | ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3798 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)) | |
| 2 | 1 | a1i 11 | 1 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∃!weu 2566 [wsbc 3770 ℩cio 6491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3771 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |