Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc5 | Structured version Visualization version GIF version |
Description: Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbc5 | ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc5 3758 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)) | |
2 | 1 | a1i 11 | 1 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∃!weu 2567 [wsbc 3730 ℩cio 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-sbc 3731 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |