Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotavalb | Structured version Visualization version GIF version |
Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6407. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotavalb | ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6407 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
2 | iotasbc 42037 | . . . 4 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦))) | |
3 | iotaexeu 42036 | . . . . 5 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
4 | eqsbc1 3765 | . . . . 5 ⊢ ((℩𝑥𝜑) ∈ V → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦)) |
6 | 2, 5 | bitr3d 280 | . . 3 ⊢ (∃!𝑥𝜑 → (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
7 | equequ2 2029 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
8 | 7 | bibi2d 343 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑧) ↔ (𝜑 ↔ 𝑥 = 𝑦))) |
9 | 8 | albidv 1923 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
10 | 9 | biimpac 479 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
11 | 10 | exlimiv 1933 | . . 3 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
12 | 6, 11 | syl6bir 253 | . 2 ⊢ (∃!𝑥𝜑 → ((℩𝑥𝜑) = 𝑦 → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
13 | 1, 12 | impbid2 225 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 [wsbc 3716 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 |
This theorem is referenced by: iotavalsb 42051 |
Copyright terms: Public domain | W3C validator |