![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotavalb | Structured version Visualization version GIF version |
Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6519. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotavalb | ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6519 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
2 | iotasbc 43856 | . . . 4 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦))) | |
3 | iotaexeu 43855 | . . . . 5 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
4 | eqsbc1 3826 | . . . . 5 ⊢ ((℩𝑥𝜑) ∈ V → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦)) |
6 | 2, 5 | bitr3d 281 | . . 3 ⊢ (∃!𝑥𝜑 → (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
7 | equequ2 2022 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
8 | 7 | bibi2d 342 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑧) ↔ (𝜑 ↔ 𝑥 = 𝑦))) |
9 | 8 | albidv 1916 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
10 | 9 | biimpac 478 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
11 | 10 | exlimiv 1926 | . . 3 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
12 | 6, 11 | syl6bir 254 | . 2 ⊢ (∃!𝑥𝜑 → ((℩𝑥𝜑) = 𝑦 → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
13 | 1, 12 | impbid2 225 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃!weu 2558 Vcvv 3471 [wsbc 3776 ℩cio 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-sbc 3777 df-un 3952 df-in 3954 df-ss 3964 df-sn 4630 df-pr 4632 df-uni 4909 df-iota 6500 |
This theorem is referenced by: iotavalsb 43870 |
Copyright terms: Public domain | W3C validator |