Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotavalb | Structured version Visualization version GIF version |
Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6392. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotavalb | ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6392 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
2 | iotasbc 41926 | . . . 4 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦))) | |
3 | iotaexeu 41925 | . . . . 5 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
4 | eqsbc1 3760 | . . . . 5 ⊢ ((℩𝑥𝜑) ∈ V → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦)) |
6 | 2, 5 | bitr3d 280 | . . 3 ⊢ (∃!𝑥𝜑 → (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
7 | equequ2 2030 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
8 | 7 | bibi2d 342 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑧) ↔ (𝜑 ↔ 𝑥 = 𝑦))) |
9 | 8 | albidv 1924 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
10 | 9 | biimpac 478 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
11 | 10 | exlimiv 1934 | . . 3 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
12 | 6, 11 | syl6bir 253 | . 2 ⊢ (∃!𝑥𝜑 → ((℩𝑥𝜑) = 𝑦 → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
13 | 1, 12 | impbid2 225 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 Vcvv 3422 [wsbc 3711 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 |
This theorem is referenced by: iotavalsb 41940 |
Copyright terms: Public domain | W3C validator |