Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalb Structured version   Visualization version   GIF version

Theorem iotavalb 43179
Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6514. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalb (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotavalb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6514 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
2 iotasbc 43168 . . . 4 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ ∃𝑧(∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦)))
3 iotaexeu 43167 . . . . 5 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
4 eqsbc1 3826 . . . . 5 ((℩𝑥𝜑) ∈ V → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦))
53, 4syl 17 . . . 4 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦))
62, 5bitr3d 280 . . 3 (∃!𝑥𝜑 → (∃𝑧(∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
7 equequ2 2029 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
87bibi2d 342 . . . . . 6 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑧) ↔ (𝜑𝑥 = 𝑦)))
98albidv 1923 . . . . 5 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
109biimpac 479 . . . 4 ((∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
1110exlimiv 1933 . . 3 (∃𝑧(∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
126, 11syl6bir 253 . 2 (∃!𝑥𝜑 → ((℩𝑥𝜑) = 𝑦 → ∀𝑥(𝜑𝑥 = 𝑦)))
131, 12impbid2 225 1 (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2562  Vcvv 3474  [wsbc 3777  cio 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-sbc 3778  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495
This theorem is referenced by:  iotavalsb  43182
  Copyright terms: Public domain W3C validator