Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalb Structured version   Visualization version   GIF version

Theorem iotavalb 40179
Description: Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6157. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalb (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotavalb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iotaval 6157 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
2 iotasbc 40168 . . . 4 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ ∃𝑧(∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦)))
3 iotaexeu 40167 . . . . 5 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
4 eqsbc3 3715 . . . . 5 ((℩𝑥𝜑) ∈ V → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦))
53, 4syl 17 . . . 4 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑧]𝑧 = 𝑦 ↔ (℩𝑥𝜑) = 𝑦))
62, 5bitr3d 273 . . 3 (∃!𝑥𝜑 → (∃𝑧(∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
7 equequ2 1983 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
87bibi2d 335 . . . . . 6 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑧) ↔ (𝜑𝑥 = 𝑦)))
98albidv 1879 . . . . 5 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
109biimpac 471 . . . 4 ((∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
1110exlimiv 1889 . . 3 (∃𝑧(∀𝑥(𝜑𝑥 = 𝑧) ∧ 𝑧 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
126, 11syl6bir 246 . 2 (∃!𝑥𝜑 → ((℩𝑥𝜑) = 𝑦 → ∀𝑥(𝜑𝑥 = 𝑦)))
131, 12impbid2 218 1 (∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1505   = wceq 1507  wex 1742  wcel 2050  ∃!weu 2583  Vcvv 3409  [wsbc 3675  cio 6144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-rex 3088  df-v 3411  df-sbc 3676  df-un 3828  df-sn 4436  df-pr 4438  df-uni 4707  df-iota 6146
This theorem is referenced by:  iotavalsb  40182
  Copyright terms: Public domain W3C validator