Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.24 Structured version   Visualization version   GIF version

Theorem pm14.24 40625
 Description: Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
pm14.24 (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pm14.24
StepHypRef Expression
1 nfeu1 2671 . . . . 5 𝑥∃!𝑥𝜑
2 nfsbc1v 3795 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
3 pm14.12 40614 . . . . . . . . . 10 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
4319.21bbi 2181 . . . . . . . . 9 (∃!𝑥𝜑 → ((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
54ancomsd 466 . . . . . . . 8 (∃!𝑥𝜑 → (([𝑦 / 𝑥]𝜑𝜑) → 𝑥 = 𝑦))
65expdimp 453 . . . . . . 7 ((∃!𝑥𝜑[𝑦 / 𝑥]𝜑) → (𝜑𝑥 = 𝑦))
7 pm13.13b 40601 . . . . . . . . 9 (([𝑦 / 𝑥]𝜑𝑥 = 𝑦) → 𝜑)
87ex 413 . . . . . . . 8 ([𝑦 / 𝑥]𝜑 → (𝑥 = 𝑦𝜑))
98adantl 482 . . . . . . 7 ((∃!𝑥𝜑[𝑦 / 𝑥]𝜑) → (𝑥 = 𝑦𝜑))
106, 9impbid 213 . . . . . 6 ((∃!𝑥𝜑[𝑦 / 𝑥]𝜑) → (𝜑𝑥 = 𝑦))
1110ex 413 . . . . 5 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
121, 2, 11alrimd 2208 . . . 4 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
13 iotaval 6326 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
1413eqcomd 2831 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
1512, 14syl6 35 . . 3 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
16 iota4 6333 . . . 4 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
17 dfsbcq 3777 . . . 4 (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
1816, 17syl5ibrcom 248 . . 3 (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → [𝑦 / 𝑥]𝜑))
1915, 18impbid 213 . 2 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
2019alrimiv 1921 1 (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396  ∀wal 1528   = wceq 1530  ∃!weu 2650  [wsbc 3775  ℩cio 6309 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-rex 3148  df-v 3501  df-sbc 3776  df-un 3944  df-sn 4564  df-pr 4566  df-uni 4837  df-iota 6311 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator