Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.24 Structured version   Visualization version   GIF version

Theorem pm14.24 44552
Description: Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
pm14.24 (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pm14.24
StepHypRef Expression
1 nfeu1 2585 . . . . 5 𝑥∃!𝑥𝜑
2 nfsbc1v 3757 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
3 pm14.12 44541 . . . . . . . . . 10 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
4319.21bbi 2195 . . . . . . . . 9 (∃!𝑥𝜑 → ((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
54ancomsd 465 . . . . . . . 8 (∃!𝑥𝜑 → (([𝑦 / 𝑥]𝜑𝜑) → 𝑥 = 𝑦))
65expdimp 452 . . . . . . 7 ((∃!𝑥𝜑[𝑦 / 𝑥]𝜑) → (𝜑𝑥 = 𝑦))
7 pm13.13b 44528 . . . . . . . . 9 (([𝑦 / 𝑥]𝜑𝑥 = 𝑦) → 𝜑)
87ex 412 . . . . . . . 8 ([𝑦 / 𝑥]𝜑 → (𝑥 = 𝑦𝜑))
98adantl 481 . . . . . . 7 ((∃!𝑥𝜑[𝑦 / 𝑥]𝜑) → (𝑥 = 𝑦𝜑))
106, 9impbid 212 . . . . . 6 ((∃!𝑥𝜑[𝑦 / 𝑥]𝜑) → (𝜑𝑥 = 𝑦))
1110ex 412 . . . . 5 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
121, 2, 11alrimd 2220 . . . 4 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
13 iotaval 6462 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
1413eqcomd 2739 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
1512, 14syl6 35 . . 3 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
16 iota4 6469 . . . 4 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
17 dfsbcq 3739 . . . 4 (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
1816, 17syl5ibrcom 247 . . 3 (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → [𝑦 / 𝑥]𝜑))
1915, 18impbid 212 . 2 (∃!𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
2019alrimiv 1928 1 (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  ∃!weu 2565  [wsbc 3737  cio 6442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-sbc 3738  df-un 3903  df-ss 3915  df-sn 4578  df-pr 4580  df-uni 4861  df-iota 6444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator