Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3l Structured version   Visualization version   GIF version

Theorem iscnrm3l 48832
Description: Lemma for iscnrm3 48833. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3l (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) → ((𝐶𝐷) = ∅ → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))))
Distinct variable groups:   𝐶,𝑘,𝑙,𝑚,𝑛   𝐷,𝑘,𝑙,𝑚,𝑛   𝑘,𝐽,𝑙,𝑚,𝑛   𝑘,𝑍,𝑙,𝑚,𝑛   𝐶,𝑠,𝑡,𝑚,𝑛   𝐷,𝑠,𝑡   𝐽,𝑠,𝑡
Allowed substitution hints:   𝑍(𝑡,𝑠)

Proof of Theorem iscnrm3l
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑠 = 𝐶𝑡 = 𝐷) → 𝑠 = 𝐶)
2 simpr 484 . . . . . 6 ((𝑠 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
32fveq2d 6890 . . . . 5 ((𝑠 = 𝐶𝑡 = 𝐷) → ((cls‘𝐽)‘𝑡) = ((cls‘𝐽)‘𝐷))
41, 3ineq12d 4201 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (𝑠 ∩ ((cls‘𝐽)‘𝑡)) = (𝐶 ∩ ((cls‘𝐽)‘𝐷)))
54eqeq1d 2736 . . 3 ((𝑠 = 𝐶𝑡 = 𝐷) → ((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ↔ (𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅))
61fveq2d 6890 . . . . 5 ((𝑠 = 𝐶𝑡 = 𝐷) → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝐶))
76, 2ineq12d 4201 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (((cls‘𝐽)‘𝑠) ∩ 𝑡) = (((cls‘𝐽)‘𝐶) ∩ 𝐷))
87eqeq1d 2736 . . 3 ((𝑠 = 𝐶𝑡 = 𝐷) → ((((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅ ↔ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅))
95, 8anbi12d 632 . 2 ((𝑠 = 𝐶𝑡 = 𝐷) → (((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) ↔ ((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅)))
101sseq1d 3995 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (𝑠𝑛𝐶𝑛))
112sseq1d 3995 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (𝑡𝑚𝐷𝑚))
1210, 113anbi12d 1438 . . 3 ((𝑠 = 𝐶𝑡 = 𝐷) → ((𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)))
13122rexbidv 3209 . 2 ((𝑠 = 𝐶𝑡 = 𝐷) → (∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)))
14 iscnrm3llem1 48830 . 2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐶 ∈ 𝒫 𝐽𝐷 ∈ 𝒫 𝐽))
15 simp1 1136 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐽 ∈ Top)
16 eqidd 2735 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐽 = 𝐽)
17 simp21 1206 . . . . 5 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝑍 ∈ 𝒫 𝐽)
1817elpwid 4589 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝑍 𝐽)
19 eqidd 2735 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐽t 𝑍) = (𝐽t 𝑍))
20 simp22 1207 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐶 ∈ (Clsd‘(𝐽t 𝑍)))
21 simp3 1138 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐶𝐷) = ∅)
22 simp23 1208 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐷 ∈ (Clsd‘(𝐽t 𝑍)))
2315, 16, 18, 19, 20, 21, 22restclssep 48797 . . 3 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → ((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅))
24 iscnrm3llem2 48831 . . 3 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
2523, 24embantd 59 . 2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → ((((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
269, 13, 14, 25iscnrm3lem5 48818 1 (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) → ((𝐶𝐷) = ∅ → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4887  cfv 6541  (class class class)co 7413  t crest 17437  Topctop 22848  Clsdccld 22971  clsccl 22973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-en 8968  df-fin 8971  df-fi 9433  df-rest 17439  df-topgen 17460  df-top 22849  df-topon 22866  df-bases 22901  df-cld 22974  df-cls 22976
This theorem is referenced by:  iscnrm3  48833
  Copyright terms: Public domain W3C validator