Proof of Theorem iscnrm3l
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . 5
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → 𝑠 = 𝐶) |
2 | | simpr 484 |
. . . . . 6
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → 𝑡 = 𝐷) |
3 | 2 | fveq2d 6760 |
. . . . 5
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → ((cls‘𝐽)‘𝑡) = ((cls‘𝐽)‘𝐷)) |
4 | 1, 3 | ineq12d 4144 |
. . . 4
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑠 ∩ ((cls‘𝐽)‘𝑡)) = (𝐶 ∩ ((cls‘𝐽)‘𝐷))) |
5 | 4 | eqeq1d 2740 |
. . 3
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → ((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ↔ (𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅)) |
6 | 1 | fveq2d 6760 |
. . . . 5
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝐶)) |
7 | 6, 2 | ineq12d 4144 |
. . . 4
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → (((cls‘𝐽)‘𝑠) ∩ 𝑡) = (((cls‘𝐽)‘𝐶) ∩ 𝐷)) |
8 | 7 | eqeq1d 2740 |
. . 3
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → ((((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅ ↔ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅)) |
9 | 5, 8 | anbi12d 630 |
. 2
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → (((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) ↔ ((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅))) |
10 | 1 | sseq1d 3948 |
. . . 4
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑠 ⊆ 𝑛 ↔ 𝐶 ⊆ 𝑛)) |
11 | 2 | sseq1d 3948 |
. . . 4
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → (𝑡 ⊆ 𝑚 ↔ 𝐷 ⊆ 𝑚)) |
12 | 10, 11 | 3anbi12d 1435 |
. . 3
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → ((𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |
13 | 12 | 2rexbidv 3228 |
. 2
⊢ ((𝑠 = 𝐶 ∧ 𝑡 = 𝐷) → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |
14 | | iscnrm3llem1 46131 |
. 2
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∈ 𝒫 ∪ 𝐽
∧ 𝐷 ∈ 𝒫
∪ 𝐽)) |
15 | | simp1 1134 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → 𝐽 ∈ Top) |
16 | | eqidd 2739 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → ∪ 𝐽 =
∪ 𝐽) |
17 | | simp21 1204 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → 𝑍 ∈ 𝒫 ∪ 𝐽) |
18 | 17 | elpwid 4541 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → 𝑍 ⊆ ∪ 𝐽) |
19 | | eqidd 2739 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → (𝐽 ↾t 𝑍) = (𝐽 ↾t 𝑍)) |
20 | | simp22 1205 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍))) |
21 | | simp3 1136 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∩ 𝐷) = ∅) |
22 | | simp23 1206 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) |
23 | 15, 16, 18, 19, 20, 21, 22 | restclssep 46097 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → ((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅)) |
24 | | iscnrm3llem2 46132 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) →
(∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
25 | 23, 24 | embantd 59 |
. 2
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
∧ (𝐶 ∩ 𝐷) = ∅) → ((((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
26 | 9, 13, 14, 25 | iscnrm3lem5 46119 |
1
⊢ (𝐽 ∈ Top →
(∀𝑠 ∈ 𝒫
∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((𝑍 ∈ 𝒫 ∪ 𝐽
∧ 𝐶 ∈
(Clsd‘(𝐽
↾t 𝑍))
∧ 𝐷 ∈
(Clsd‘(𝐽
↾t 𝑍)))
→ ((𝐶 ∩ 𝐷) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))))) |