Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3l Structured version   Visualization version   GIF version

Theorem iscnrm3l 48927
Description: Lemma for iscnrm3 48928. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3l (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) → ((𝐶𝐷) = ∅ → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))))
Distinct variable groups:   𝐶,𝑘,𝑙,𝑚,𝑛   𝐷,𝑘,𝑙,𝑚,𝑛   𝑘,𝐽,𝑙,𝑚,𝑛   𝑘,𝑍,𝑙,𝑚,𝑛   𝐶,𝑠,𝑡,𝑚,𝑛   𝐷,𝑠,𝑡   𝐽,𝑠,𝑡
Allowed substitution hints:   𝑍(𝑡,𝑠)

Proof of Theorem iscnrm3l
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑠 = 𝐶𝑡 = 𝐷) → 𝑠 = 𝐶)
2 simpr 484 . . . . . 6 ((𝑠 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
32fveq2d 6864 . . . . 5 ((𝑠 = 𝐶𝑡 = 𝐷) → ((cls‘𝐽)‘𝑡) = ((cls‘𝐽)‘𝐷))
41, 3ineq12d 4186 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (𝑠 ∩ ((cls‘𝐽)‘𝑡)) = (𝐶 ∩ ((cls‘𝐽)‘𝐷)))
54eqeq1d 2732 . . 3 ((𝑠 = 𝐶𝑡 = 𝐷) → ((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ↔ (𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅))
61fveq2d 6864 . . . . 5 ((𝑠 = 𝐶𝑡 = 𝐷) → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝐶))
76, 2ineq12d 4186 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (((cls‘𝐽)‘𝑠) ∩ 𝑡) = (((cls‘𝐽)‘𝐶) ∩ 𝐷))
87eqeq1d 2732 . . 3 ((𝑠 = 𝐶𝑡 = 𝐷) → ((((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅ ↔ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅))
95, 8anbi12d 632 . 2 ((𝑠 = 𝐶𝑡 = 𝐷) → (((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) ↔ ((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅)))
101sseq1d 3980 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (𝑠𝑛𝐶𝑛))
112sseq1d 3980 . . . 4 ((𝑠 = 𝐶𝑡 = 𝐷) → (𝑡𝑚𝐷𝑚))
1210, 113anbi12d 1439 . . 3 ((𝑠 = 𝐶𝑡 = 𝐷) → ((𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)))
13122rexbidv 3203 . 2 ((𝑠 = 𝐶𝑡 = 𝐷) → (∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)))
14 iscnrm3llem1 48925 . 2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐶 ∈ 𝒫 𝐽𝐷 ∈ 𝒫 𝐽))
15 simp1 1136 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐽 ∈ Top)
16 eqidd 2731 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐽 = 𝐽)
17 simp21 1207 . . . . 5 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝑍 ∈ 𝒫 𝐽)
1817elpwid 4574 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝑍 𝐽)
19 eqidd 2731 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐽t 𝑍) = (𝐽t 𝑍))
20 simp22 1208 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐶 ∈ (Clsd‘(𝐽t 𝑍)))
21 simp3 1138 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐶𝐷) = ∅)
22 simp23 1209 . . . 4 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → 𝐷 ∈ (Clsd‘(𝐽t 𝑍)))
2315, 16, 18, 19, 20, 21, 22restclssep 48892 . . 3 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → ((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅))
24 iscnrm3llem2 48926 . . 3 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
2523, 24embantd 59 . 2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → ((((𝐶 ∩ ((cls‘𝐽)‘𝐷)) = ∅ ∧ (((cls‘𝐽)‘𝐶) ∩ 𝐷) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
269, 13, 14, 25iscnrm3lem5 48913 1 (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) → ((𝐶𝐷) = ∅ → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3915  wss 3916  c0 4298  𝒫 cpw 4565   cuni 4873  cfv 6513  (class class class)co 7389  t crest 17389  Topctop 22786  Clsdccld 22909  clsccl 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-en 8921  df-fin 8924  df-fi 9368  df-rest 17391  df-topgen 17412  df-top 22787  df-topon 22804  df-bases 22839  df-cld 22912  df-cls 22914
This theorem is referenced by:  iscnrm3  48928
  Copyright terms: Public domain W3C validator