| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isdmn2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| isdmn2 | ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdmn 38053 | . 2 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | |
| 2 | prrngorngo 38050 | . . . 4 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | |
| 3 | iscrngo 37995 | . . . . 5 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
| 4 | 3 | baibr 536 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps)) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ PrRing → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps)) |
| 6 | 5 | pm5.32i 574 | . 2 ⊢ ((𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 RingOpscrngo 37893 Com2ccm2 37988 CRingOpsccring 37992 PrRingcprrng 38045 Dmncdmn 38046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-crngo 37993 df-prrngo 38047 df-dmn 38048 |
| This theorem is referenced by: dmncrng 38055 flddmn 38057 isdmn3 38073 |
| Copyright terms: Public domain | W3C validator |