Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn2 Structured version   Visualization version   GIF version

Theorem isdmn2 36140
Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isdmn2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))

Proof of Theorem isdmn2
StepHypRef Expression
1 isdmn 36139 . 2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
2 prrngorngo 36136 . . . 4 (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
3 iscrngo 36081 . . . . 5 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
43baibr 536 . . . 4 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps))
52, 4syl 17 . . 3 (𝑅 ∈ PrRing → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps))
65pm5.32i 574 . 2 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
71, 6bitri 274 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  RingOpscrngo 35979  Com2ccm2 36074  CRingOpsccring 36078  PrRingcprrng 36131  Dmncdmn 36132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-crngo 36079  df-prrngo 36133  df-dmn 36134
This theorem is referenced by:  dmncrng  36141  flddmn  36143  isdmn3  36159
  Copyright terms: Public domain W3C validator