| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isdmn2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| isdmn2 | ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdmn 38043 | . 2 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | |
| 2 | prrngorngo 38040 | . . . 4 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | |
| 3 | iscrngo 37985 | . . . . 5 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
| 4 | 3 | baibr 536 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps)) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ PrRing → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps)) |
| 6 | 5 | pm5.32i 574 | . 2 ⊢ ((𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 RingOpscrngo 37883 Com2ccm2 37978 CRingOpsccring 37982 PrRingcprrng 38035 Dmncdmn 38036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-crngo 37983 df-prrngo 38037 df-dmn 38038 |
| This theorem is referenced by: dmncrng 38045 flddmn 38047 isdmn3 38063 |
| Copyright terms: Public domain | W3C validator |