Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isdmn2 | Structured version Visualization version GIF version |
Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isdmn2 | ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdmn 36199 | . 2 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | |
2 | prrngorngo 36196 | . . . 4 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | |
3 | iscrngo 36141 | . . . . 5 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
4 | 3 | baibr 537 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ PrRing → (𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps)) |
6 | 5 | pm5.32i 575 | . 2 ⊢ ((𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
7 | 1, 6 | bitri 274 | 1 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 RingOpscrngo 36039 Com2ccm2 36134 CRingOpsccring 36138 PrRingcprrng 36191 Dmncdmn 36192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-iota 6386 df-fv 6436 df-crngo 36139 df-prrngo 36193 df-dmn 36194 |
This theorem is referenced by: dmncrng 36201 flddmn 36203 isdmn3 36219 |
Copyright terms: Public domain | W3C validator |