Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngpr Structured version   Visualization version   GIF version

Theorem divrngpr 38020
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
divrngpr (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)

Proof of Theorem divrngpr
StepHypRef Expression
1 eqid 2729 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2729 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2729 . . . 4 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
4 eqid 2729 . . . 4 ran (1st𝑅) = ran (1st𝑅)
51, 2, 3, 4isdrngo1 37923 . . 3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd𝑅) ↾ ((ran (1st𝑅) ∖ {(GId‘(1st𝑅))}) × (ran (1st𝑅) ∖ {(GId‘(1st𝑅))}))) ∈ GrpOp))
65simplbi 497 . 2 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
7 eqid 2729 . . 3 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
81, 2, 4, 3, 7dvrunz 37921 . 2 (𝑅 ∈ DivRingOps → (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)))
91, 2, 4, 3divrngidl 37995 . 2 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)})
101, 2, 4, 3, 7smprngopr 38019 . 2 ((𝑅 ∈ RingOps ∧ (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)}) → 𝑅 ∈ PrRing)
116, 8, 9, 10syl3anc 1373 1 (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585  {cpr 4587   × cxp 5629  ran crn 5632  cres 5633  cfv 6499  1st c1st 7945  2nd c2nd 7946  GrpOpcgr 30391  GIdcgi 30392  RingOpscrngo 37861  DivRingOpscdrng 37915  Idlcidl 37974  PrRingcprrng 38013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-1st 7947  df-2nd 7948  df-1o 8411  df-en 8896  df-grpo 30395  df-gid 30396  df-ginv 30397  df-ablo 30447  df-ass 37810  df-exid 37812  df-mgmOLD 37816  df-sgrOLD 37828  df-mndo 37834  df-rngo 37862  df-drngo 37916  df-idl 37977  df-pridl 37978  df-prrngo 38015
This theorem is referenced by:  flddmn  38025
  Copyright terms: Public domain W3C validator