Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngpr Structured version   Visualization version   GIF version

Theorem divrngpr 35793
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
divrngpr (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)

Proof of Theorem divrngpr
StepHypRef Expression
1 eqid 2758 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2758 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2758 . . . 4 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
4 eqid 2758 . . . 4 ran (1st𝑅) = ran (1st𝑅)
51, 2, 3, 4isdrngo1 35696 . . 3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd𝑅) ↾ ((ran (1st𝑅) ∖ {(GId‘(1st𝑅))}) × (ran (1st𝑅) ∖ {(GId‘(1st𝑅))}))) ∈ GrpOp))
65simplbi 501 . 2 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
7 eqid 2758 . . 3 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
81, 2, 4, 3, 7dvrunz 35694 . 2 (𝑅 ∈ DivRingOps → (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)))
91, 2, 4, 3divrngidl 35768 . 2 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)})
101, 2, 4, 3, 7smprngopr 35792 . 2 ((𝑅 ∈ RingOps ∧ (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)}) → 𝑅 ∈ PrRing)
116, 8, 9, 10syl3anc 1368 1 (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2951  cdif 3855  {csn 4522  {cpr 4524   × cxp 5522  ran crn 5525  cres 5526  cfv 6335  1st c1st 7691  2nd c2nd 7692  GrpOpcgr 28371  GIdcgi 28372  RingOpscrngo 35634  DivRingOpscdrng 35688  Idlcidl 35747  PrRingcprrng 35786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-om 7580  df-1st 7693  df-2nd 7694  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-grpo 28375  df-gid 28376  df-ginv 28377  df-ablo 28427  df-ass 35583  df-exid 35585  df-mgmOLD 35589  df-sgrOLD 35601  df-mndo 35607  df-rngo 35635  df-drngo 35689  df-idl 35750  df-pridl 35751  df-prrngo 35788
This theorem is referenced by:  flddmn  35798
  Copyright terms: Public domain W3C validator