Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngpr Structured version   Visualization version   GIF version

Theorem divrngpr 38033
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
divrngpr (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)

Proof of Theorem divrngpr
StepHypRef Expression
1 eqid 2729 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2729 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2729 . . . 4 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
4 eqid 2729 . . . 4 ran (1st𝑅) = ran (1st𝑅)
51, 2, 3, 4isdrngo1 37936 . . 3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd𝑅) ↾ ((ran (1st𝑅) ∖ {(GId‘(1st𝑅))}) × (ran (1st𝑅) ∖ {(GId‘(1st𝑅))}))) ∈ GrpOp))
65simplbi 497 . 2 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
7 eqid 2729 . . 3 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
81, 2, 4, 3, 7dvrunz 37934 . 2 (𝑅 ∈ DivRingOps → (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)))
91, 2, 4, 3divrngidl 38008 . 2 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)})
101, 2, 4, 3, 7smprngopr 38032 . 2 ((𝑅 ∈ RingOps ∧ (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)}) → 𝑅 ∈ PrRing)
116, 8, 9, 10syl3anc 1373 1 (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {csn 4577  {cpr 4579   × cxp 5617  ran crn 5620  cres 5621  cfv 6482  1st c1st 7922  2nd c2nd 7923  GrpOpcgr 30433  GIdcgi 30434  RingOpscrngo 37874  DivRingOpscdrng 37928  Idlcidl 37987  PrRingcprrng 38026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-1st 7924  df-2nd 7925  df-1o 8388  df-en 8873  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-ass 37823  df-exid 37825  df-mgmOLD 37829  df-sgrOLD 37841  df-mndo 37847  df-rngo 37875  df-drngo 37929  df-idl 37990  df-pridl 37991  df-prrngo 38028
This theorem is referenced by:  flddmn  38038
  Copyright terms: Public domain W3C validator