Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngpr Structured version   Visualization version   GIF version

Theorem divrngpr 38101
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
divrngpr (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)

Proof of Theorem divrngpr
StepHypRef Expression
1 eqid 2731 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2731 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2731 . . . 4 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
4 eqid 2731 . . . 4 ran (1st𝑅) = ran (1st𝑅)
51, 2, 3, 4isdrngo1 38004 . . 3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd𝑅) ↾ ((ran (1st𝑅) ∖ {(GId‘(1st𝑅))}) × (ran (1st𝑅) ∖ {(GId‘(1st𝑅))}))) ∈ GrpOp))
65simplbi 497 . 2 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
7 eqid 2731 . . 3 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
81, 2, 4, 3, 7dvrunz 38002 . 2 (𝑅 ∈ DivRingOps → (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)))
91, 2, 4, 3divrngidl 38076 . 2 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)})
101, 2, 4, 3, 7smprngopr 38100 . 2 ((𝑅 ∈ RingOps ∧ (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)}) → 𝑅 ∈ PrRing)
116, 8, 9, 10syl3anc 1373 1 (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4573  {cpr 4575   × cxp 5612  ran crn 5615  cres 5616  cfv 6481  1st c1st 7919  2nd c2nd 7920  GrpOpcgr 30469  GIdcgi 30470  RingOpscrngo 37942  DivRingOpscdrng 37996  Idlcidl 38055  PrRingcprrng 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-1o 8385  df-en 8870  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-ass 37891  df-exid 37893  df-mgmOLD 37897  df-sgrOLD 37909  df-mndo 37915  df-rngo 37943  df-drngo 37997  df-idl 38058  df-pridl 38059  df-prrngo 38096
This theorem is referenced by:  flddmn  38106
  Copyright terms: Public domain W3C validator