| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divrngpr | Structured version Visualization version GIF version | ||
| Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| divrngpr | ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
| 4 | eqid 2729 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 5 | 1, 2, 3, 4 | isdrngo1 37923 | . . 3 ⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd ‘𝑅) ↾ ((ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}) × (ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}))) ∈ GrpOp)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
| 7 | eqid 2729 | . . 3 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
| 8 | 1, 2, 4, 3, 7 | dvrunz 37921 | . 2 ⊢ (𝑅 ∈ DivRingOps → (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅))) |
| 9 | 1, 2, 4, 3 | divrngidl 37995 | . 2 ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) |
| 10 | 1, 2, 4, 3, 7 | smprngopr 38019 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) → 𝑅 ∈ PrRing) |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 {cpr 4587 × cxp 5629 ran crn 5632 ↾ cres 5633 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 GrpOpcgr 30391 GIdcgi 30392 RingOpscrngo 37861 DivRingOpscdrng 37915 Idlcidl 37974 PrRingcprrng 38013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-1st 7947 df-2nd 7948 df-1o 8411 df-en 8896 df-grpo 30395 df-gid 30396 df-ginv 30397 df-ablo 30447 df-ass 37810 df-exid 37812 df-mgmOLD 37816 df-sgrOLD 37828 df-mndo 37834 df-rngo 37862 df-drngo 37916 df-idl 37977 df-pridl 37978 df-prrngo 38015 |
| This theorem is referenced by: flddmn 38025 |
| Copyright terms: Public domain | W3C validator |