| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divrngpr | Structured version Visualization version GIF version | ||
| Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| divrngpr | ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
| 4 | eqid 2729 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 5 | 1, 2, 3, 4 | isdrngo1 37936 | . . 3 ⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd ‘𝑅) ↾ ((ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}) × (ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}))) ∈ GrpOp)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
| 7 | eqid 2729 | . . 3 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
| 8 | 1, 2, 4, 3, 7 | dvrunz 37934 | . 2 ⊢ (𝑅 ∈ DivRingOps → (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅))) |
| 9 | 1, 2, 4, 3 | divrngidl 38008 | . 2 ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) |
| 10 | 1, 2, 4, 3, 7 | smprngopr 38032 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) → 𝑅 ∈ PrRing) |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 {cpr 4579 × cxp 5617 ran crn 5620 ↾ cres 5621 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 GrpOpcgr 30433 GIdcgi 30434 RingOpscrngo 37874 DivRingOpscdrng 37928 Idlcidl 37987 PrRingcprrng 38026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-1st 7924 df-2nd 7925 df-1o 8388 df-en 8873 df-grpo 30437 df-gid 30438 df-ginv 30439 df-ablo 30489 df-ass 37823 df-exid 37825 df-mgmOLD 37829 df-sgrOLD 37841 df-mndo 37847 df-rngo 37875 df-drngo 37929 df-idl 37990 df-pridl 37991 df-prrngo 38028 |
| This theorem is referenced by: flddmn 38038 |
| Copyright terms: Public domain | W3C validator |