Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngpr Structured version   Visualization version   GIF version

Theorem divrngpr 38013
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
divrngpr (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)

Proof of Theorem divrngpr
StepHypRef Expression
1 eqid 2740 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2740 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2740 . . . 4 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
4 eqid 2740 . . . 4 ran (1st𝑅) = ran (1st𝑅)
51, 2, 3, 4isdrngo1 37916 . . 3 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd𝑅) ↾ ((ran (1st𝑅) ∖ {(GId‘(1st𝑅))}) × (ran (1st𝑅) ∖ {(GId‘(1st𝑅))}))) ∈ GrpOp))
65simplbi 497 . 2 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
7 eqid 2740 . . 3 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
81, 2, 4, 3, 7dvrunz 37914 . 2 (𝑅 ∈ DivRingOps → (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)))
91, 2, 4, 3divrngidl 37988 . 2 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)})
101, 2, 4, 3, 7smprngopr 38012 . 2 ((𝑅 ∈ RingOps ∧ (GId‘(2nd𝑅)) ≠ (GId‘(1st𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st𝑅))}, ran (1st𝑅)}) → 𝑅 ∈ PrRing)
116, 8, 9, 10syl3anc 1371 1 (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  {cpr 4650   × cxp 5698  ran crn 5701  cres 5702  cfv 6573  1st c1st 8028  2nd c2nd 8029  GrpOpcgr 30521  GIdcgi 30522  RingOpscrngo 37854  DivRingOpscdrng 37908  Idlcidl 37967  PrRingcprrng 38006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-1st 8030  df-2nd 8031  df-1o 8522  df-en 9004  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-ass 37803  df-exid 37805  df-mgmOLD 37809  df-sgrOLD 37821  df-mndo 37827  df-rngo 37855  df-drngo 37909  df-idl 37970  df-pridl 37971  df-prrngo 38008
This theorem is referenced by:  flddmn  38018
  Copyright terms: Public domain W3C validator