|   | Mathbox for Jeff Madsen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divrngpr | Structured version Visualization version GIF version | ||
| Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) | 
| Ref | Expression | 
|---|---|
| divrngpr | ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2736 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 3 | eqid 2736 | . . . 4 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
| 4 | eqid 2736 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 5 | 1, 2, 3, 4 | isdrngo1 37964 | . . 3 ⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd ‘𝑅) ↾ ((ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}) × (ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}))) ∈ GrpOp)) | 
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) | 
| 7 | eqid 2736 | . . 3 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
| 8 | 1, 2, 4, 3, 7 | dvrunz 37962 | . 2 ⊢ (𝑅 ∈ DivRingOps → (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅))) | 
| 9 | 1, 2, 4, 3 | divrngidl 38036 | . 2 ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) | 
| 10 | 1, 2, 4, 3, 7 | smprngopr 38060 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) → 𝑅 ∈ PrRing) | 
| 11 | 6, 8, 9, 10 | syl3anc 1372 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∖ cdif 3947 {csn 4625 {cpr 4627 × cxp 5682 ran crn 5685 ↾ cres 5686 ‘cfv 6560 1st c1st 8013 2nd c2nd 8014 GrpOpcgr 30509 GIdcgi 30510 RingOpscrngo 37902 DivRingOpscdrng 37956 Idlcidl 38015 PrRingcprrng 38054 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-1st 8015 df-2nd 8016 df-1o 8507 df-en 8987 df-grpo 30513 df-gid 30514 df-ginv 30515 df-ablo 30565 df-ass 37851 df-exid 37853 df-mgmOLD 37857 df-sgrOLD 37869 df-mndo 37875 df-rngo 37903 df-drngo 37957 df-idl 38018 df-pridl 38019 df-prrngo 38056 | 
| This theorem is referenced by: flddmn 38066 | 
| Copyright terms: Public domain | W3C validator |