![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > divrngpr | Structured version Visualization version GIF version |
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
divrngpr | ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2740 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2740 | . . . 4 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
4 | eqid 2740 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
5 | 1, 2, 3, 4 | isdrngo1 37916 | . . 3 ⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((2nd ‘𝑅) ↾ ((ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}) × (ran (1st ‘𝑅) ∖ {(GId‘(1st ‘𝑅))}))) ∈ GrpOp)) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
7 | eqid 2740 | . . 3 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
8 | 1, 2, 4, 3, 7 | dvrunz 37914 | . 2 ⊢ (𝑅 ∈ DivRingOps → (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅))) |
9 | 1, 2, 4, 3 | divrngidl 37988 | . 2 ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) |
10 | 1, 2, 4, 3, 7 | smprngopr 38012 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ≠ (GId‘(1st ‘𝑅)) ∧ (Idl‘𝑅) = {{(GId‘(1st ‘𝑅))}, ran (1st ‘𝑅)}) → 𝑅 ∈ PrRing) |
11 | 6, 8, 9, 10 | syl3anc 1371 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 {cpr 4650 × cxp 5698 ran crn 5701 ↾ cres 5702 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 GrpOpcgr 30521 GIdcgi 30522 RingOpscrngo 37854 DivRingOpscdrng 37908 Idlcidl 37967 PrRingcprrng 38006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-1st 8030 df-2nd 8031 df-1o 8522 df-en 9004 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-ass 37803 df-exid 37805 df-mgmOLD 37809 df-sgrOLD 37821 df-mndo 37827 df-rngo 37855 df-drngo 37909 df-idl 37970 df-pridl 37971 df-prrngo 38008 |
This theorem is referenced by: flddmn 38018 |
Copyright terms: Public domain | W3C validator |