| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| ixpeq12i.1 | ⊢ 𝐴 = 𝐵 |
| ixpeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| ixpeq12i | ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq12i.2 | . . . 4 ⊢ 𝐶 = 𝐷 | |
| 2 | 1 | rgenw 3064 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷 |
| 3 | ixpeq2 8947 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐴 𝐷) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐴 𝐷 |
| 5 | ixpeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 6 | 5 | ixpeq1i 36179 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐷 = X𝑥 ∈ 𝐵 𝐷 |
| 7 | 4, 6 | eqtri 2764 | 1 ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3060 Xcixp 8933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-ss 3967 df-fn 6562 df-ixp 8934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |