![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpeq12i | Structured version Visualization version GIF version |
Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
ixpeq12i.1 | ⊢ 𝐴 = 𝐵 |
ixpeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ixpeq12i | ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq12i.2 | . . . 4 ⊢ 𝐶 = 𝐷 | |
2 | 1 | rgenw 3071 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷 |
3 | ixpeq2 8963 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐴 𝐷) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐴 𝐷 |
5 | ixpeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
6 | 5 | ixpeq1i 36156 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐷 = X𝑥 ∈ 𝐵 𝐷 |
7 | 4, 6 | eqtri 2768 | 1 ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∀wral 3067 Xcixp 8949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-ss 3993 df-fn 6571 df-ixp 8950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |