Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpeq12i Structured version   Visualization version   GIF version

Theorem ixpeq12i 36148
Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
ixpeq12i.1 𝐴 = 𝐵
ixpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
ixpeq12i X𝑥𝐴 𝐶 = X𝑥𝐵 𝐷

Proof of Theorem ixpeq12i
StepHypRef Expression
1 ixpeq12i.2 . . . 4 𝐶 = 𝐷
21rgenw 3054 . . 3 𝑥𝐴 𝐶 = 𝐷
3 ixpeq2 8920 . . 3 (∀𝑥𝐴 𝐶 = 𝐷X𝑥𝐴 𝐶 = X𝑥𝐴 𝐷)
42, 3ax-mp 5 . 2 X𝑥𝐴 𝐶 = X𝑥𝐴 𝐷
5 ixpeq12i.1 . . 3 𝐴 = 𝐵
65ixpeq1i 36147 . 2 X𝑥𝐴 𝐷 = X𝑥𝐵 𝐷
74, 6eqtri 2757 1 X𝑥𝐴 𝐶 = X𝑥𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wral 3050  Xcixp 8906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-ss 3941  df-fn 6531  df-ixp 8907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator