| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| ixpeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ixp 8834 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
| 2 | ss2ixp 8834 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) |
| 4 | eqss 3945 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
| 5 | 4 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) |
| 6 | r19.26 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) |
| 8 | eqss 3945 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶 ↔ (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) | |
| 9 | 3, 7, 8 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∀wral 3047 ⊆ wss 3897 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-ss 3914 df-ixp 8822 |
| This theorem is referenced by: ixpeq2dva 8836 ixpint 8849 prdsbas3 17385 pwsbas 17391 ptbasfi 23496 ptunimpt 23510 pttopon 23511 ptcld 23528 ptrescn 23554 ptuncnv 23722 ptunhmeo 23723 ixpeq12i 36243 ptrest 37667 prdstotbnd 37842 ixpeq2d 45113 hoidmv1le 46640 |
| Copyright terms: Public domain | W3C validator |