Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ixpeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ixp 8672 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
2 | ss2ixp 8672 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) |
4 | eqss 3940 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
5 | 4 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) |
6 | r19.26 3096 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
7 | 5, 6 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) |
8 | eqss 3940 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶 ↔ (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) | |
9 | 3, 7, 8 | 3imtr4i 291 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∀wral 3065 ⊆ wss 3891 Xcixp 8659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-in 3898 df-ss 3908 df-ixp 8660 |
This theorem is referenced by: ixpeq2dva 8674 ixpint 8687 prdsbas3 17173 pwsbas 17179 ptbasfi 22713 ptunimpt 22727 pttopon 22728 ptcld 22745 ptrescn 22771 ptuncnv 22939 ptunhmeo 22940 ptrest 35755 prdstotbnd 35931 ixpeq2d 42569 hoidmv1le 44086 |
Copyright terms: Public domain | W3C validator |