MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2 Structured version   Visualization version   GIF version

Theorem ixpeq2 8189
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)

Proof of Theorem ixpeq2
StepHypRef Expression
1 ss2ixp 8188 . . 3 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
2 ss2ixp 8188 . . 3 (∀𝑥𝐴 𝐶𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐵)
31, 2anim12i 606 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → (X𝑥𝐴 𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐶X𝑥𝐴 𝐵))
4 eqss 3842 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 3189 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 3274 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 267 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3842 . 2 (X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶 ↔ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐶X𝑥𝐴 𝐵))
93, 7, 83imtr4i 284 1 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wral 3117  wss 3798  Xcixp 8175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-in 3805  df-ss 3812  df-ixp 8176
This theorem is referenced by:  ixpeq2dva  8190  ixpint  8202  prdsbas3  16494  pwsbas  16500  ptbasfi  21755  ptunimpt  21769  pttopon  21770  ptcld  21787  ptrescn  21813  ptuncnv  21981  ptunhmeo  21982  ptrest  33945  prdstotbnd  34128  ixpeq2d  40047  hoidmv1le  41595
  Copyright terms: Public domain W3C validator