Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ixpeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ixp 8673 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
2 | ss2ixp 8673 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) |
4 | eqss 3941 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
5 | 4 | ralbii 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) |
6 | r19.26 3097 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
7 | 5, 6 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) |
8 | eqss 3941 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶 ↔ (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) | |
9 | 3, 7, 8 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∀wral 3066 ⊆ wss 3892 Xcixp 8660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-in 3899 df-ss 3909 df-ixp 8661 |
This theorem is referenced by: ixpeq2dva 8675 ixpint 8688 prdsbas3 17182 pwsbas 17188 ptbasfi 22722 ptunimpt 22736 pttopon 22737 ptcld 22754 ptrescn 22780 ptuncnv 22948 ptunhmeo 22949 ptrest 35764 prdstotbnd 35940 ixpeq2d 42578 hoidmv1le 44095 |
Copyright terms: Public domain | W3C validator |