MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2 Structured version   Visualization version   GIF version

Theorem ixpeq2 8901
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)

Proof of Theorem ixpeq2
StepHypRef Expression
1 ss2ixp 8900 . . 3 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
2 ss2ixp 8900 . . 3 (∀𝑥𝐴 𝐶𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐵)
31, 2anim12i 614 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → (X𝑥𝐴 𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐶X𝑥𝐴 𝐵))
4 eqss 3996 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 3094 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 3112 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 275 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3996 . 2 (X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶 ↔ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐶X𝑥𝐴 𝐵))
93, 7, 83imtr4i 292 1 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wral 3062  wss 3947  Xcixp 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-v 3477  df-in 3954  df-ss 3964  df-ixp 8888
This theorem is referenced by:  ixpeq2dva  8902  ixpint  8915  prdsbas3  17423  pwsbas  17429  ptbasfi  23067  ptunimpt  23081  pttopon  23082  ptcld  23099  ptrescn  23125  ptuncnv  23293  ptunhmeo  23294  ptrest  36425  prdstotbnd  36600  ixpeq2d  43688  hoidmv1le  45245
  Copyright terms: Public domain W3C validator