MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moabs Structured version   Visualization version   GIF version

Theorem moabs 2544
Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002.) Shorten proof and avoid df-eu 2570. (Revised by BJ, 14-Oct-2022.)
Assertion
Ref Expression
moabs (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))

Proof of Theorem moabs
StepHypRef Expression
1 ax-1 6 . 2 (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃*𝑥𝜑))
2 nexmo 2542 . . 3 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
3 id 22 . . 3 (∃*𝑥𝜑 → ∃*𝑥𝜑)
42, 3ja 186 . 2 ((∃𝑥𝜑 → ∃*𝑥𝜑) → ∃*𝑥𝜑)
51, 4impbii 208 1 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1785  ∃*wmo 2539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974
This theorem depends on definitions:  df-bi 206  df-ex 1786  df-mo 2541
This theorem is referenced by:  mo3  2565  mo4  2567  moeu  2584  dffun7  6457  wl-mo3t  35710
  Copyright terms: Public domain W3C validator