![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moabs | Structured version Visualization version GIF version |
Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002.) Shorten proof and avoid df-eu 2564. (Revised by BJ, 14-Oct-2022.) |
Ref | Expression |
---|---|
moabs | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | nexmo 2536 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
3 | id 22 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
4 | 2, 3 | ja 186 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) → ∃*𝑥𝜑) |
5 | 1, 4 | impbii 208 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 ∃*wmo 2533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-mo 2535 |
This theorem is referenced by: mo3 2559 mo4 2561 moeu 2578 dffun7 6576 wl-mo3t 36441 |
Copyright terms: Public domain | W3C validator |