Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moabs | Structured version Visualization version GIF version |
Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002.) Shorten proof and avoid df-eu 2567. (Revised by BJ, 14-Oct-2022.) |
Ref | Expression |
---|---|
moabs | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | nexmo 2539 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
3 | id 22 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
4 | 2, 3 | ja 186 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) → ∃*𝑥𝜑) |
5 | 1, 4 | impbii 208 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1780 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-mo 2538 |
This theorem is referenced by: mo3 2562 mo4 2564 moeu 2581 dffun7 6511 wl-mo3t 35836 |
Copyright terms: Public domain | W3C validator |