| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moabs | Structured version Visualization version GIF version | ||
| Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002.) Shorten proof and avoid df-eu 2569. (Revised by BJ, 14-Oct-2022.) |
| Ref | Expression |
|---|---|
| moabs | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
| 2 | nexmo 2541 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
| 3 | id 22 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
| 4 | 2, 3 | ja 186 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) → ∃*𝑥𝜑) |
| 5 | 1, 4 | impbii 209 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2540 |
| This theorem is referenced by: mo3 2564 mo4 2566 moeu 2583 dffun7 6568 wl-mo3t 37599 |
| Copyright terms: Public domain | W3C validator |