| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun7 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 6547 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| dffun7 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6527 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | moabs 2537 | . . . . . 6 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦)) | |
| 3 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm 5867 | . . . . . . 7 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦) ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦)) |
| 6 | 2, 5 | bitr4i 278 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦)) |
| 7 | 6 | albii 1819 | . . . 4 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦)) |
| 8 | df-ral 3046 | . . . 4 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦)) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) |
| 11 | 1, 10 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 ∀wral 3045 class class class wbr 5110 dom cdm 5641 Rel wrel 5646 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 |
| This theorem is referenced by: dffun8 6547 dffun9 6548 brdom5 10489 imasaddfnlem 17498 imasvscafn 17507 funressnfv 47048 |
| Copyright terms: Public domain | W3C validator |