MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun7 Structured version   Visualization version   GIF version

Theorem dffun7 6407
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 6408 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
dffun7 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dffun7
StepHypRef Expression
1 dffun6 6395 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 moabs 2542 . . . . . 6 (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦))
3 vex 3412 . . . . . . . 8 𝑥 ∈ V
43eldm 5769 . . . . . . 7 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦)
54imbi1i 353 . . . . . 6 ((𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦) ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦))
62, 5bitr4i 281 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
76albii 1827 . . . 4 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
8 df-ral 3066 . . . 4 (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
97, 8bitr4i 281 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
109anbi2i 626 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
111, 10bitri 278 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541  wex 1787  wcel 2110  ∃*wmo 2537  wral 3061   class class class wbr 5053  dom cdm 5551  Rel wrel 5556  Fun wfun 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-cnv 5559  df-co 5560  df-dm 5561  df-fun 6382
This theorem is referenced by:  dffun8  6408  dffun9  6409  brdom5  10143  imasaddfnlem  17033  imasvscafn  17042  funressnfv  44209
  Copyright terms: Public domain W3C validator