![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2618 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | mobidv 2547 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | exlimiv 1928 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
5 | 2, 4 | moanimlem 2616 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 |
This theorem is referenced by: 2reuswap 3755 2reuswap2 3756 2reu5lem2 3765 2rmoswap 3770 funmo 6583 funmoOLD 6584 funcnv 6637 fncnv 6641 isarep2 6659 fnres 6696 mptfnf 6704 fnopabg 6706 fvopab3ig 7012 opabex 7240 fnoprabg 7556 ovidi 7576 ovig 7579 caovmo 7670 zfrep6 7978 oprabexd 7999 oprabex 8000 nqerf 10968 cnextfun 24088 perfdvf 25953 taylf 26417 reuxfrdf 32519 abrexdomjm 32535 abrexdom 37717 modelaxreplem2 44944 |
Copyright terms: Public domain | W3C validator |