Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2622 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | mobidv 2549 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | exlimiv 1934 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
5 | 2, 4 | moanimlem 2620 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 |
This theorem is referenced by: 2reuswap 3676 2reuswap2 3677 2reu5lem2 3686 2rmoswap 3691 funmo 6434 funcnv 6487 fncnv 6491 isarep2 6507 fnres 6543 mptfnf 6552 fnopabg 6554 fvopab3ig 6853 opabex 7078 fnoprabg 7375 ovidi 7394 ovig 7397 caovmo 7487 zfrep6 7771 oprabexd 7791 oprabex 7792 nqerf 10617 cnextfun 23123 perfdvf 24972 taylf 25425 reuxfrdf 30740 abrexdomjm 30753 abrexdom 35815 |
Copyright terms: Public domain | W3C validator |