MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanimv Structured version   Visualization version   GIF version

Theorem moanimv 2612
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2613 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21mobidv 2542 . 2 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
3 simpl 482 . . 3 ((𝜑𝜓) → 𝜑)
43exlimiv 1930 . 2 (∃𝑥(𝜑𝜓) → 𝜑)
52, 4moanimlem 2611 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  ∃*wmo 2531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2533
This theorem is referenced by:  2reuswap  3708  2reuswap2  3709  2reu5lem2  3718  2rmoswap  3723  funmo  6502  funcnv  6555  fncnv  6559  isarep2  6576  fnres  6613  mptfnf  6621  fnopabg  6623  fvopab3ig  6930  opabex  7160  fnoprabg  7476  ovidi  7496  ovig  7499  caovmo  7590  zfrep6  7897  oprabexd  7917  oprabex  7918  nqerf  10843  cnextfun  23967  perfdvf  25820  taylf  26284  reuxfrdf  32453  abrexdomjm  32469  abrexdom  37712  modelaxreplem2  44956
  Copyright terms: Public domain W3C validator