Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2641 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 532 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | mobidv 2567 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
3 | simpl 486 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | exlimiv 1931 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
5 | 2, 4 | moanimlem 2639 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∃*wmo 2555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-mo 2557 |
This theorem is referenced by: 2reuswap 3660 2reuswap2 3661 2reu5lem2 3670 2rmoswap 3675 funmo 6351 funcnv 6404 fncnv 6408 isarep2 6424 fnres 6457 mptfnf 6466 fnopabg 6468 fvopab3ig 6755 opabex 6974 fnoprabg 7269 ovidi 7288 ovig 7291 caovmo 7381 zfrep6 7660 oprabexd 7680 oprabex 7681 nqerf 10390 cnextfun 22764 perfdvf 24602 taylf 25055 reuxfrdf 30361 abrexdomjm 30374 abrexdom 35448 |
Copyright terms: Public domain | W3C validator |