![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2617 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 530 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | mobidv 2544 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
3 | simpl 484 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | exlimiv 1934 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
5 | 2, 4 | moanimlem 2615 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃*wmo 2533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-mo 2535 |
This theorem is referenced by: 2reuswap 3743 2reuswap2 3744 2reu5lem2 3753 2rmoswap 3758 funmo 6564 funmoOLD 6565 funcnv 6618 fncnv 6622 isarep2 6640 fnres 6678 mptfnf 6686 fnopabg 6688 fvopab3ig 6995 opabex 7222 fnoprabg 7531 ovidi 7551 ovig 7554 caovmo 7644 zfrep6 7941 oprabexd 7962 oprabex 7963 nqerf 10925 cnextfun 23568 perfdvf 25420 taylf 25873 reuxfrdf 31762 abrexdomjm 31775 abrexdom 36646 |
Copyright terms: Public domain | W3C validator |