| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version | ||
| Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2613 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | mobidv 2542 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
| 3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
| 5 | 2, 4 | moanimlem 2611 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: 2reuswap 3717 2reuswap2 3718 2reu5lem2 3727 2rmoswap 3732 funmo 6531 funmoOLD 6532 funcnv 6585 fncnv 6589 isarep2 6608 fnres 6645 mptfnf 6653 fnopabg 6655 fvopab3ig 6964 opabex 7194 fnoprabg 7512 ovidi 7532 ovig 7535 caovmo 7626 zfrep6 7933 oprabexd 7954 oprabex 7955 nqerf 10883 cnextfun 23951 perfdvf 25804 taylf 26268 reuxfrdf 32420 abrexdomjm 32436 abrexdom 37724 modelaxreplem2 44969 |
| Copyright terms: Public domain | W3C validator |