![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2616 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 529 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | mobidv 2543 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
3 | simpl 483 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | exlimiv 1933 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
5 | 2, 4 | moanimlem 2614 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃*wmo 2532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-mo 2534 |
This theorem is referenced by: 2reuswap 3742 2reuswap2 3743 2reu5lem2 3752 2rmoswap 3757 funmo 6563 funmoOLD 6564 funcnv 6617 fncnv 6621 isarep2 6639 fnres 6677 mptfnf 6685 fnopabg 6687 fvopab3ig 6994 opabex 7224 fnoprabg 7533 ovidi 7553 ovig 7556 caovmo 7646 zfrep6 7943 oprabexd 7964 oprabex 7965 nqerf 10927 cnextfun 23788 perfdvf 25644 taylf 26097 reuxfrdf 31986 abrexdomjm 31999 abrexdom 36901 |
Copyright terms: Public domain | W3C validator |