| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version | ||
| Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2619 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | mobidv 2548 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
| 3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
| 5 | 2, 4 | moanimlem 2617 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃*wmo 2537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 |
| This theorem is referenced by: 2reuswap 3729 2reuswap2 3730 2reu5lem2 3739 2rmoswap 3744 funmo 6551 funmoOLD 6552 funcnv 6605 fncnv 6609 isarep2 6628 fnres 6665 mptfnf 6673 fnopabg 6675 fvopab3ig 6982 opabex 7212 fnoprabg 7530 ovidi 7550 ovig 7553 caovmo 7644 zfrep6 7953 oprabexd 7974 oprabex 7975 nqerf 10944 cnextfun 24002 perfdvf 25856 taylf 26320 reuxfrdf 32472 abrexdomjm 32488 abrexdom 37754 modelaxreplem2 45004 |
| Copyright terms: Public domain | W3C validator |