MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanimv Structured version   Visualization version   GIF version

Theorem moanimv 2622
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2623 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21mobidv 2552 . 2 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
3 simpl 482 . . 3 ((𝜑𝜓) → 𝜑)
43exlimiv 1929 . 2 (∃𝑥(𝜑𝜓) → 𝜑)
52, 4moanimlem 2621 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543
This theorem is referenced by:  2reuswap  3768  2reuswap2  3769  2reu5lem2  3778  2rmoswap  3783  funmo  6593  funmoOLD  6594  funcnv  6647  fncnv  6651  isarep2  6669  fnres  6707  mptfnf  6715  fnopabg  6717  fvopab3ig  7025  opabex  7257  fnoprabg  7573  ovidi  7593  ovig  7596  caovmo  7687  zfrep6  7995  oprabexd  8016  oprabex  8017  nqerf  10999  cnextfun  24093  perfdvf  25958  taylf  26420  reuxfrdf  32519  abrexdomjm  32535  abrexdom  37690
  Copyright terms: Public domain W3C validator