MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanimv Structured version   Visualization version   GIF version

Theorem moanimv 2617
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2618 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21mobidv 2547 . 2 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
3 simpl 482 . . 3 ((𝜑𝜓) → 𝜑)
43exlimiv 1928 . 2 (∃𝑥(𝜑𝜓) → 𝜑)
52, 4moanimlem 2616 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-mo 2538
This theorem is referenced by:  2reuswap  3755  2reuswap2  3756  2reu5lem2  3765  2rmoswap  3770  funmo  6583  funmoOLD  6584  funcnv  6637  fncnv  6641  isarep2  6659  fnres  6696  mptfnf  6704  fnopabg  6706  fvopab3ig  7012  opabex  7240  fnoprabg  7556  ovidi  7576  ovig  7579  caovmo  7670  zfrep6  7978  oprabexd  7999  oprabex  8000  nqerf  10968  cnextfun  24088  perfdvf  25953  taylf  26417  reuxfrdf  32519  abrexdomjm  32535  abrexdom  37717  modelaxreplem2  44944
  Copyright terms: Public domain W3C validator