MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanimv Structured version   Visualization version   GIF version

Theorem moanimv 2615
Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2616 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 ibar 529 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21mobidv 2543 . 2 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
3 simpl 483 . . 3 ((𝜑𝜓) → 𝜑)
43exlimiv 1933 . 2 (∃𝑥(𝜑𝜓) → 𝜑)
52, 4moanimlem 2614 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  ∃*wmo 2532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-mo 2534
This theorem is referenced by:  2reuswap  3742  2reuswap2  3743  2reu5lem2  3752  2rmoswap  3757  funmo  6563  funmoOLD  6564  funcnv  6617  fncnv  6621  isarep2  6639  fnres  6677  mptfnf  6685  fnopabg  6687  fvopab3ig  6994  opabex  7224  fnoprabg  7533  ovidi  7553  ovig  7556  caovmo  7646  zfrep6  7943  oprabexd  7964  oprabex  7965  nqerf  10927  cnextfun  23788  perfdvf  25644  taylf  26097  reuxfrdf  31986  abrexdomjm  31999  abrexdom  36901
  Copyright terms: Public domain W3C validator