| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version | ||
| Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2613 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | mobidv 2542 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
| 3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
| 5 | 2, 4 | moanimlem 2611 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: 2reuswap 3708 2reuswap2 3709 2reu5lem2 3718 2rmoswap 3723 funmo 6502 funcnv 6555 fncnv 6559 isarep2 6576 fnres 6613 mptfnf 6621 fnopabg 6623 fvopab3ig 6930 opabex 7160 fnoprabg 7476 ovidi 7496 ovig 7499 caovmo 7590 zfrep6 7897 oprabexd 7917 oprabex 7918 nqerf 10843 cnextfun 23967 perfdvf 25820 taylf 26284 reuxfrdf 32453 abrexdomjm 32469 abrexdom 37712 modelaxreplem2 44956 |
| Copyright terms: Public domain | W3C validator |