| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version | ||
| Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2614 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | mobidv 2543 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
| 3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
| 5 | 2, 4 | moanimlem 2612 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃*wmo 2532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 |
| This theorem is referenced by: 2reuswap 3720 2reuswap2 3721 2reu5lem2 3730 2rmoswap 3735 funmo 6534 funmoOLD 6535 funcnv 6588 fncnv 6592 isarep2 6611 fnres 6648 mptfnf 6656 fnopabg 6658 fvopab3ig 6967 opabex 7197 fnoprabg 7515 ovidi 7535 ovig 7538 caovmo 7629 zfrep6 7936 oprabexd 7957 oprabex 7958 nqerf 10890 cnextfun 23958 perfdvf 25811 taylf 26275 reuxfrdf 32427 abrexdomjm 32443 abrexdom 37731 modelaxreplem2 44976 |
| Copyright terms: Public domain | W3C validator |