| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version | ||
| Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2617 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | mobidv 2546 | . 2 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) |
| 3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | exlimiv 1931 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) |
| 5 | 2, 4 | moanimlem 2615 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃*wmo 2535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 |
| This theorem is referenced by: 2reuswap 3701 2reuswap2 3702 2reu5lem2 3711 2rmoswap 3716 funmo 6504 funcnv 6557 fncnv 6561 isarep2 6578 fnres 6615 mptfnf 6623 fnopabg 6625 fvopab3ig 6933 opabex 7162 fnoprabg 7477 ovidi 7497 ovig 7500 caovmo 7591 zfrep6 7895 oprabexd 7915 oprabex 7916 nqerf 10830 cnextfun 23982 perfdvf 25834 taylf 26298 reuxfrdf 32474 abrexdomjm 32491 abrexdom 37793 modelaxreplem2 45099 |
| Copyright terms: Public domain | W3C validator |