MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanim Structured version   Visualization version   GIF version

Theorem moanim 2615
Description: Introduction of a conjunct into "at most one" quantifier. For a version requiring disjoint variables, but fewer axioms, see moanimv 2614. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 24-Dec-2018.)
Hypothesis
Ref Expression
moanim.1 𝑥𝜑
Assertion
Ref Expression
moanim (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))

Proof of Theorem moanim
StepHypRef Expression
1 moanim.1 . . 3 𝑥𝜑
2 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2mobid 2545 . 2 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
4 simpl 482 . . 3 ((𝜑𝜓) → 𝜑)
51, 4exlimi 2220 . 2 (∃𝑥(𝜑𝜓) → 𝜑)
63, 5moanimlem 2613 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1784  ∃*wmo 2533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-mo 2535
This theorem is referenced by:  moanmo  2617  reuxfrdf  32468
  Copyright terms: Public domain W3C validator