Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  moeu2 Structured version   Visualization version   GIF version

Theorem moeu2 37169
Description: Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024.)
Assertion
Ref Expression
moeu2 (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))

Proof of Theorem moeu2
StepHypRef Expression
1 moeu 2578 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 imor 852 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
31, 2bitri 275 1 (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 846  wex 1782  ∃*wmo 2533  ∃!weu 2563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-mo 2535  df-eu 2564
This theorem is referenced by:  mopickr  37170
  Copyright terms: Public domain W3C validator