| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > moeu2 | Structured version Visualization version GIF version | ||
| Description: Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| moeu2 | ⊢ (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeu 2577 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 2 | imor 853 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∃wex 1779 ∃*wmo 2532 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-mo 2534 df-eu 2563 |
| This theorem is referenced by: mopickr 38352 |
| Copyright terms: Public domain | W3C validator |