Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  moeu2 Structured version   Visualization version   GIF version

Theorem moeu2 38318
Description: Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024.)
Assertion
Ref Expression
moeu2 (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))

Proof of Theorem moeu2
StepHypRef Expression
1 moeu 2586 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 imor 852 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
31, 2bitri 275 1 (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846  wex 1777  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-mo 2543  df-eu 2572
This theorem is referenced by:  mopickr  38319
  Copyright terms: Public domain W3C validator