Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inecmo3 | Structured version Visualization version GIF version |
Description: Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
inecmo3 | ⊢ ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inecmo2 36488 | . 2 ⊢ ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ∧ Rel 𝑅)) | |
2 | alrmomodm 36491 | . . 3 ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) | |
3 | 2 | pm5.32ri 576 | . 2 ⊢ ((∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 274 | 1 ⊢ ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 ∀wal 1537 = wceq 1539 ∃*wmo 2538 ∀wral 3064 ∃*wrmo 3067 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 dom cdm 5589 Rel wrel 5594 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: cosscnvssid5 36596 |
Copyright terms: Public domain | W3C validator |